БОЛЬШАЯ  СОВЕТСКАЯ  ЭНЦИКЛОПЕДИЯ
В ЭНЦИКЛОПЕДИИ СОДЕРЖИТСЯ БОЛЕЕ 100000 ТЕРМИНОВ

А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я



МОЛЕКУЛЯРНАЯ-МОЛЛА

Наиболее наглядным примером того, как молекулярная трёхмерная структура определяет биологич. функции молекулы, служит ДНК. Она обладает строением двойной спирали: две нити, идущие во взаимно противоположном направлении (антипараллелъно), закручены одна вокруг другой, образуя двойную спираль со взаимно комплементарным расположением оснований, т.е. так, что против определённого основания одной цепи всегда в другой цепи стоит такое основание, к-рое наилучшим образом обеспечивает образование водородных связей: аденин (А) образует пару с тимином (Т), гуанин (Г) - с цитозином (Ц). Такая структура создаёт оптимальные условия для важнейших биологич. функций ДНК: количественного умножения наследственной информации в процессе клеточного деления при сохранении качественной неизменности этого потока генетич. информации. При делении клетки нити двойной спирали ДНК, служащей в качестве матрицы, или шаблона, расплетаются и на каждой из них под действием ферментов синтезируется комплементарная новая нить. В результате этого из одной материнской молекулы ДНК получаются две совершенно тождественные ей дочерние молекулы (см. Клетка, Митоз).

Так же и в случае гемоглобина оказалось, что его биологич. функция - способность обратимо присоединять кислород в лёгких и затем отдавать его тканям - теснейшим образом связана с особенностями трёхмерной структуры гемоглобина и её изменениями в процессе осуществления свойственной ему физио-логич. роли. При связывании и диссоциации О2 происходят пространственные изменения конформации молекулы гемоглобина, ведущие к изменению сродства содержащихся в нём атомов железа к кислороду. Изменения размеров молекулы гемоглобина, напоминающие изменения объёма грудной клетки при дыхании, позволили назвать гемоглобин "молекулярными лёгкими".

Одна из важнейших черт живых объектов - их способность тонко регулировать все проявления жизнедеятельности. Крупным вкладом М. б. в науч. открытия следует считать раскрытие нового, ранее неизвестного регуляторного механизма, обозначаемого как аллостериче-ский эффект. Он заключается в способности веществ низкой мол. массы-т. н. лигандов -видоизменять специфич. биологич. функции макромолекул, в первую очередь каталитически действующих белков - ферментов, гемоглобина, рецепторных белков, участвующих в построении биологических мембран, в синаптич. передаче (см. Синапсы) и т. д.

Три биотических потока. В свете представлений М. б. совокупность явлений жизни можно рассматривать как результат сочетания трёх потоков: потока материи, находящего своё выражение в явлениях обмена веществ, т. е. ассимиляции и диссимиляции; потока энергии, являющейся движущей силой для всех проявлений жизнедеятельности; и потока информации, пронизывающего собой не только всё многообразие процессов развития и существования каждого организма, но и непрерывную череду сменяющих друг друга поколений. Именно представление о потоке информации, внесённое в учение о живом мире развитием М. б., накладывает на неё свой специфический, уникальный отпечаток.

Важнейшие достижения молекулярной биологии. Стремительность, размах и глубину влияния М. б. на успехи в познании коренных проблем изучения живой природы справедливо сравнивают, напр., с влиянием квантовой теории на развитие атомной физики. Два внутренне связанных условия определили это революционизирующее воздействие. С одной стороны, решающую роль сыграло обнаружение возможности изучения важнейших проявлений жизнедеятельности в простейших условиях, приближающихся к типу химич. и физич. экспериментов. С другой стороны, как следствие указанного обстоятельства, имело место быстрое включение значит, числа представителей точных наук - физиков, химиков, кристаллографов, а затем и математиков -в разработку биологич. проблем. В своей совокупности эти обстоятельства и обусловили необычайно быстрый темп развития М. б., число и значимость её успехов, достигнутых всего за два десятилетия. Вот далеко не полный перечень этих достижений: раскрытие структуры и механизма биологич. функции ДНК, всех типов РНК и рибосом, раскрытие генетического кода; открытие обратной транскрипции, т. е. синтеза ДНК на матрице РНК; изучение механизмов функционирования дыхательных пигментов; открытие трёхмерной структуры и её функциональной роли в действии ферментов, принципа матричного синтеза и механизмов биосинтеза белков; раскрытие структуры вирусов и механизмов их репликации, первичной и, частично, пространственной структуры антител; изолирование индивидуальных генов; химич., а затем биологич. (ферментативный) синтез гена, в т. ч. человеческого, вне клетки (in vitro); перенос генов из одного организма в другой, в т. ч. в клетки человека; стремительно идущая расшифровка химич. структуры возрастающего числа индивидуальных белков, гл. обр. ферментов, а также нуклеиновых к-т; обнаружение явлений "самосборки" нек-рых биологич. объектов всё возрастающей сложности, начиная от молекул нуклеиновых кислот и переходя к многокомпонентным ферментам, вирусам, рибосомам и т. д.; выяснение ал-лостерических и др. осн. принципов регулирования биол. функций и процессов.

Редукцяонизм и интеграция. М. б. является завершающим этапом того направления в изучении живых объектов, к-рое обозначается как "редукционизм", т. е. стремление свести сложные жизненные функции к явлениям, протекающим на уровне молекул и потому доступным изучению методами физики и химии. Достигнутые М. б. успехи свидетельствуют об эффективности такого подхода. Вместе с тем необходимо учитывать, что в естеств. условиях в клетке, ткани, органе и целом организме мы имеем дело с системами возрастающей степени усложнённости. Такие системы образуются из компонентов более низкого уровня путём их закономерной интеграции в целостности, приобретающие структурную и функциональную организацию и обладающие новыми свойствами. Поэтому по мере детализации познаний о закономерностях, доступных раскрытию на молекулярном и примыкающих уровнях, перед М. б. встают задачи познания механизмов интеграции как линии дальнейшего развития в изучении явлений жизни. Отправной точкой здесь служит исследование сил межмолекулярных взаимодействий - водородных связей, ван-дер-ваальсовых, электростатич. сил и т. д. Своей совокупностью и пространственным расположением они образуют то, что может быть обозначено как "интегратив-ная информация". Её следует рассматривать как одну из гл. частей уже упоминавшегося потока информации. В области М. б. примерами интеграции могут служить явления самосборки сложных образований из смеси их составных частей. Сюда относятся, напр., образование многокомпонентных белков из их субъединиц, образование вирусов из их составных частей - белков и нуклеиновой к-ты, восстановление исходной структуры рибосом после разделения их белковых и нуклеиновых компонентов и т. д. Изучение этих явлений непосредственно связано с познанием осн. феноменов "узнавания" молекул биополимеров. Речь идёт о том, чтобы выяснить, какие сочетания аминокислот - в молекулах белков или нуклеотидов - в нуклеиновых к-тах взаимодействуют между собой при процессах ассоциации индивидуальных молекул с образованием комплексов строго специфичного, наперёд заданного состава и строения. Сюда относятся процессы образования сложных белков из их субъединиц; далее, избирательное взаимовоздействие между молекулами нуклеиновых кислот, напр, транспортными и матричными (в этом случае существенно расширило наши сведения раскрытие генетич. кода); наконец, это образование мн. типов структур (напр., рибосом, вирусов, хромосом), в к-рых участвуют и белки, и нуклеиновые к-ты. Раскрытие соответствующих закономерностей, познание "языка", лежащего в основе указанных взаимодействий, составляет одну из важнейших областей М. б., ещё ожидающую своей разработки. Эту область рассматривают как принадлежащую к числу фундаментальных проблем для всей биосферы.

Задачи молекулярной биологии. Наряду с указанными важными задачами М. б. (познанием закономерностей "узнавания", самосборки и интеграции) актуальным направлением науч. поиска ближайшего будущего является разработка методов, позволяющих расшифровывать структуру, а затем и трёхмерную, пространственную организацию высокомолекулярных нуклеиновых к-т. В данное время это достигнуто в отношении общего плана трёхмерной структуры ДНК (двойной спирали), но без точного знания её первичной структуры. Быстрые успехи в разработке аналитич. методов позволяют с уверенностью ждать достижения указанных целей на протяжении ближайших лет. Здесь, разумеется, гл. вклады идут от представителей смежных наук, в первую очередь физики и химии. Все важнейшие методы, использование к-рых обеспечило возникновение и успехи М. б., были предложены и разработаны физиками (ультрацентрифугирование, рентгеноструктурный анализ, электронная микроскопия, ядерный магнитный резонанс и др.). Почти все новые физич. экспериментальные подходы (напр., использование ЭВМ, синхро-тронного, или тормозного, излучения, лазерной техники и др.) открывают новые возможности для углублённого изучения проблем М. б. В числе важнейших задач практич. характера, ответ на к-рые ожидается от М. о., на первом месте стоит проблема молекулярных основ злокачеств, роста, далее - пути предупреждения, а быть может, и преодоления наследств, заболеваний - "молекулярных болезней". Большое значение будет иметь выяснение молекулярных основ биологич. катализа, т. е. действия ферментов. К числу важнейших совр. направлений М. б. следует отнести стремление расшифровать молекулярные механизмы действия гормонов, токсич. и лекарств, веществ, а также выяснить детали молекулярного строения и функционирования таких клеточных структур, как биологические мембраны, участвующие в регуляции процессов проникновения и транспорта веществ. Более отдалённые цели М. б.-познание природы нервных процессов, механизмов памяти и т. д. Один из важных формирующихся разделов М. б.-т. н. генная инженерия, ставящая своей задачей целенаправленное оперирование генетич. аппаратом (гено-мом) живых организмов, начиная с микробов и низших (одноклеточных) и кончая человеком (в последнем случае прежде всего в целях радикального лечения наследственных заболеваний и исправления генетич. дефектов). О более обширных вмешательствах в генетич. основу человека речь может идти лишь в более или менее отдалённом будущем, т. к. при этом возникают серьёзные препятствия как технического, так и принципиального характера. В отношении микробов, растений, а возможно, и с.-х. животных такие перспективы весьма обнадёживаю-щи (напр., получение сортов культурных растений, обладающих аппаратом фиксации азота из воздуха и не нуждающихся в удобрениях). Они основаны на уже достигнутых успехах: изолирование и синтез генов, перенос генов из одного организма в другой, применение массовых культур клеток в качестве продуцентов хоз. или мед. важных веществ.

Организация исследований по молекулярной биологии. Быстрое развитие М. б. повлекло за собой возникновение большого числа специализированных н.-и. центров. Количество их быстро возрастает. Наиболее крупные: в Великобритании -Лаборатория молекулярной биологии в Кембридже, Королевский ин-т в Лондоне; во Франции - ин-ты молекулярной биологии в Париже, Марселе, Страсбург, Пастеровский ин-т; в США - отделы М. б. в ун-тах и ин-тах в Бостоне (Гарвардский ун-т, Массачусетсский тех-нологич. ин-т), Сан-Франциско (Беркли), Лос-Анджелесе (Калифорнийский тех-нологич. ин-т), Нью-Йорке (Рокфеллеровский ун-т), ин-ты здравоохранения в Бетесде и др.; в ФРГ - ин-ты Макса Планка, ун-ты в Гёттингене и Мюнхене; в Швеции - Каролинский ин-т в Стокгольме; в ГДР - Центр, ин-т молекулярной биологии в Берлине, ин-ты в Йене и Галле; в Венгрии - Биол. центр в Сегеде. В СССР первый специализированный ин-т М. б. был создан в Москве в 1957 в системе АН СССР (см.. Молекулярной биологии институт); затем были образованы: Ин-т биоорганической химии АН СССР в Москве, Ин-т белка в Пущино, Биол. отдел в Ин-те атомной энергии (Москва), отделы М.б.в ин-тах Сио. отделения АН в Новосибирске, Межфакультетская лаборатория биоор-ганич. химии МГУ, сектор (затем ин-т) молекулярной биологии и генетики АН УССР в Киеве; значит, работа по М.б. ведётся в Ин-те высокомолекулярных соединений в Ленинграде, в ряде отделов и лабораторий АН СССР и др. ведомств.

Наряду с отд. н.-и. центрами возникли организации более широкого масштаба. В Зап. Европе возникла Европ. организация по М. б. (ЕМБО), в к-рой участвует св. 10 стран. В СССР при Ин-те молекулярной биологии в 1966 создан науч. совет по М. б., являющийся координирующим и организующим центром в этой области знаний. Им выпущена обширная серия монографий по важнейшим разделам М. б., регулярно организуются -"зимние школы" по М. б., проводятся конференции и симпозиумы по актуальным проблемам М. б. В дальнейшем науч. советы по М. 6. были созданы при АМН СССР и мн. респ. Академиях наук. С 1966 выходит журнал "Молекулярная биология" (6 выпусков в год).

За сравнительно короткий срок в СССР вырос значит, отряд исследователей в области М. б.; это учёные старшего поколения, частично переключившие свои интересы из др. областей; в главной же своей массе это многочисл. молодые исследователи. Из числа ведущих учёных, принявших деятельное участие в становлении и развитии М. б. в СССР, можно назвать таких, как А. А. Баев, А. Н. Белозерский, А. Е. Браунштейн, Ю. А. Овчинников, А. С. Спирин, М. М. Шемякин, В. А. Эн-гельгардт. Новым достижениям М. б. и молекулярной генетики будет способствовать постановление ЦК КПСС и Сов. Мин. СССР (май 1974) "О мерах по ускорению развития молекулярной биологии и молекулярной генетики и использованию их достижений в народном хозяйстве".

Лит.: Вагнер Р., Митчелл Г., Генетика и обмен веществ, пер. с англ., М., 1958; Сент-Дьердьи А., Биоэнергетика, пер. с англ., М., 1960; А н ф и н-с е н К., Молекулярные основы эволюции, пер. с англ., М., 1962; Стэнли У., В э-л е н с Э., Вирусы и природа жизни, пер. с англ., М., 1963; Молекулярная генетика, пер. с англ., ч. 1, М., 1964; В о л ь к е н-ш т е и н М. В., Молекулы н жизнь. Введение в молекулярную биофизику, М., 1965; Гауровиц Ф., Химия н функции белков, пер. с англ., М., 1965; Б р е с л е р С. Е., Введение в молекулярную биологию, 3 изд., М. - Л., 1973; Ингрэм В., Биосинтез макромолекул, пер. с англ., М., 1966; Э н г е л ь г а р д т В. А., Молекулярная биология, в кн.: Развитие биологии в СССР, М., 1967; Введение в молекулярную биологию, пер. с англ., М., 1967; У о т-с о н Д ж., Молекулярная биология гена, пер. с англ., М., 1967; Ф н н е а н Д ж., Биологические ультраструктуры, пер. с англ., М., 1970; БендоллД ж., Мышцы, молекулы и движение, пер. с англ., М., 1970; И ч а с М., Биологический код, пер. с англ., М., 1971; Молекулярная биология вирусов, М., 1971; Молекулярные основы биосинтеза белков, М., 1971; Бернхард С., Структура и функция ферментов, пер. с англ., М., 1971; С п и р н н А. С., Гавр и лова Л. П., Рибосома, 2 изд., М., 1971; Ф р е н-кель-Конрат X., Химия и биология вирусов, пер. с англ., М., 1972; Смит К., Хэнеуолт Ф., Молекулярная фотобиология. Процессы инактивации и восстановления, пер. с англ., М., 1972; X а р р и с Г., Основы биохимической генетики человека) пер. с англ., М., 1973.
В. А. Энгельгардт.

МОЛЕКУЛЯРНАЯ ГЕНЕТИКА, раздел генетики и молекулярной биологии, ставящий целью познание материальных основ наследственности и изменчивости живых существ путём исследования протекающих на субклеточном, молекулярном уровне процессов передачи, реализации и изменения генетич. информации, а также способа её хранения.

М. г. выделилась в самостоят, направление в 40-х гг. 20 в. в связи с внедрением в биологию новых физич. и химич. методов (рентгеноструктурный анализ, хро-матография, электрофорез, высокоскоростное центрифугирование, электронная микроскопия, использование радиоактивных изотопов и т. д.), что позволило гораздо глубже и точнее, чем раньше, изучать строение и функции отд. компонентов клетки и всю клетку как единую систему. С новыми методами в биологию пришли новые идеи физики и химии, математики и кибернетики. Большую роль в быстром развитии М. г. сыграло перенесение центра тяжести генетич. исследований с высших организмов (эука-риотов) - осн. объектов классич. генетики, на низшие (прокарйоты) - бактерии и мн. др. микроорганизмы, а также вирусы. Преимущества использования более простых форм жизни для решения генетич. проблем заключаются в быстрой смене поколений у этих форм и возможности изучать одновременно огромное число особей; благодаря этому сильно возрастает разрешающая способность генетич. анализа и повышается его точность. Кроме того, сравнительная простота организации бактерий и особенно вирусов облегчает выяснение молекулярной природы генетич. явлений. Высказываемое иногда мнение о тождестве М. г. и генетики микроорганизмов ошибочно. М. г. изучает молекулярные основы генетич. процессов как у низших, так и у высших организмов и не включает частной генетики прокариотов, занимающей видное место в генетике микроорганизмов.

За свою недолгую историю М. г. достигла значит, успехов, углубив и расширив представления о природе наследственности и изменчивости, и превратилась в ведущее и наиболее быстро развивающееся направление генетики.

Одно из главных достижений М. г.-выяснение химич. природы гена. Классич. генетика установила, что все наследственные потенции организмов (их генетическая информация) определяются дискретными единицами наследственности - генами, локализованными гл. обр. в хромосомах клеточного ядра, а также в нек-рых органеллах цитоплазмы (пластидах, митохондриях и др.). Однако методы классич. генетики не позволяли вскрыть химич. природу генов, что было отмечено ещё в 1928 выдающимся сов. биологом Н. К. Кольцовым, обосновавшим необходимость изучения механизма наследственности на молекулярном уровне. Первый успех в этом направлении был достигнут при изучении генетич. трансформации у бактерий. В 1944 амер. учёный О. Т. Эйвери с сотрудниками обнаружил, что наследственные признаки одного штамма пневмококков могут быть переданы другому, генетически отличному штамму путём введения в его клетки дезоксирибонуклеиновой кислоты (ДНК), выделенной из первого штамма. Впоследствии подобная генетич. трансформация с помощью ДНК была осуществлена у др. бактерий, а в последнее время - и у нек-рых многоклеточных организмов (цветковые растения, насекомые). Т. о., было показано, что гены состоят из ДНК. Этот вывод был подтверждён опытами с ДНК-содержащими вирусами: для размножения вируса достаточно введения молекул вирусной ДНК в клетку восприимчивого хозяина; все др. компоненты вируса (белки, ли-пиды) лишены инфекционных свойств и генетически инертны. Аналогичные опыты с вирусами, содержащими вместо ДНК рибонуклеиновую кислоту (РНК), показали, что у таких вирусов гены состоят из РНК. Выяснение генетич. роли ДНК и РНК послужило мощным стимулом для изучения нуклеиновых кислот биохимич., физико-химич. и рентгеноструктурными методами. В 1953 амер. учёный Дж. Уот-сон и англ, учёный Ф. Крик предложили модель структуры ДНК, предположив, что её гигантские молекулы представляют собой двойную спираль, состоящую из пары нитей, образованных нуклеоти-дами, расположенными апериодически, но в определённой последовательности. Каждый нуклеотид одной нити спарен с противолежащим нуклеотидом второй нити по правилу комплементарности. Многочисл. экспериментальные данные подтвердили гипотезу Уотсона и Крика. Несколько позже было установлено, что аналогичной структурой обладают молекулы разных РНК, только они большей частью состоят из одной полинуклеотид-ной нити. Дальнейшие работы, в к-рых химич. и физико-химич. методы сочетались с точными генетич. методами (использование разнообразных мутантов, явлений трансдукции, трансформации и т. д.), показали, что разные гены различаются как числом входящих в них пар нуклеотидов (от неск. десятков до полутора тысяч и более), так и строго определённой для каждого гена последовательностью нуклеотидов, в к-рой закодирована генетич. информация. (Принципиально сходную химич. структуру имеют и гены, состоящие из РНК,- у вирусов РНК-типа.)

Классич. генетика рассматривала ген как дискретную и неделимую единицу наследственности. Важное значение в пересмотре этой концепции имели работы сов. генетика А. С. Серебровского и его учеников, в 1930-х гг. впервые указавших на возможность делимости гена. Однако разрешающая способность методов клас-сич. генетики была недостаточной для изучения тонкого строения гена. Только с развитием М. г. удалось в 50-60-х гг. решить эту проблему. Мн. работами, проведёнными сначала на бактериях и вирусах, а затем и на многоклеточных организмах, было выяснено, что ген обладает сложным строением: он состоит из десятков или сотен участков - сайтов, способных независимо мутировать и ре-комбинировать (см. Мутации, Рекомбинация). Пределом дробим ости гена, а следовательно, и минимальным размером сайта является одна пара нуклеотидов (у вирусов, к-рые содержат одну нить РНК,- один нуклеотид). Установление тонкого строения генов позволило значительно углубить представление о механизме генетич. рекомбинации и закономерностях возникновения генных мутаций, оно способствовало также выяснению механизма функционирования генов. Данные о химич. природе и тонком строении генов позволили разработать методы их выделения. Впервые это было выполнено в 1969 амер. учёным Дж. Бэк-витом с сотрудниками для одного из генов кишечной палочки. Затем то же удалось осуществить у нек-рых высших организмов (земноводных). Ещё более значит, успех М. г. - первый химич. синтез гена (кодирующего аланиновую транспортную РНК дрожжей), осуществлённый X. Корана в 1968. Работы в этом направлении ведутся в ряде лабораторий мира. Для внеклеточного синтеза более крупных генов успешно применены новейшие биохимич. методы, основанные на явлении т. н. обратной транскрипции (см. ниже). Используя эти методы, С. Спигелмен, Д. Балтимор, П. Ледер и их сотрудники (США) далеко продвинулись по пути искусств, синтеза генов, определяющих структуру белка в молекулах гемоглобина у кролика и человека. Такие же работы проведены в последнее время и в ряде др. лабораторий, в т. ч. и в СССР.

Т. о., М. г. уже выяснила в принципе вопрос о том, как записана и хранится генетич. информация, получаемая потомками от родителей, хотя расшифровка конкретного содержания этой информации для каждого отд. гена требует ещё огромной работы.

Установление структуры ДНК открыло возможности для экспериментального исследования биосинтеза молекул ДНК -их репликации. Этот процесс лежит в основе передачи генетич. информации от клетки к клетке и от поколения к поколению, т. е. определяет относит, постоянство генов. Изучение репликации ДНК привело к важному выводу о матричном характере биосинтеза ДНК: для его осуществления необходимо наличие готовой молекулы ДНК, на к-рой, как на шаблоне (матрице), синтезируются новые молекулы ДНК. При этом двойная спираль ДНК раскручивается, и на каждой её нити синтезируется новая, комплементарная ей нить, так что дочерние молекулы ДНК состоят из одной старой и одной новой нити (полуконсервативный тип репликации). Выделен белок, вызывающий раскручивание двойной спирали ДНК, а также ферменты, осуществляющие биосинтез нуклеотидов и их соединение ("сшивание") друг с другом. Несомненно, что в клетке имеются механизмы, регулирующие синтез ДНК. Пути такой регуляции ещё во многом неясны, но очевидно, что она в большой степени определяется генетич. факторами.

М. г. достигла выдающегося успеха и в решении важнейшей задачи, сформулированной ещё классич. генетикой,-каким образом ген определяет признак, или как происходит реализация генетич. информации. Предпосылкой послужило сформулированное ещё в 1941 Дж. Бидлом и Э. Тейтемом положение "один ген - один фермент". Это положение позволило поставить вопрос в следующем виде: как гены, т. е., по сути дела, участки молекулы ДНК, определяют химич. структуру и свойства белков, спе-цифич. для данного организма? Раскрытие химич. структуры ДНК и белка дало возможность сопоставить эти два типа биополимеров, что привело к концепции генетического кода, согласно к-рой порядок чередования 4 сортов нуклеотидов в ДНК определяет порядок чередования 20 сортов аминокислот в белковой молекуле. От последовательности расположения аминокислот в белковой молекуле (её первичной структуры)зависят все её свойства. Расшифровка принципов, на к-рых основан генетич. код, была осуществлена в 1962 Ф. Криком с сотрудниками в генетич. опытах с мутантами одного бактериального вируса. Оказалось, что каждая тройка нуклеотидов в цепи ДНК (триплет, кодон) определяет, какая именно из 20 аминокислот займёт данное место в полипептидной цепи синтезируемого белка, т. е. каждый триплет кодирует определённую аминокислоту. Последующие работы позволили полностью рас- шифровать генетич. код и установить нуклеотидный состав всех триплетов, кодирующих аминокислоты, а также состав инициирующего кодона, определяющего начало синтеза данной полипептидной цепи, и трёх терминирующих кодо-нов, определяющих конец синтеза. Было найдено, что генетич. код универсален для всего живого, т. е. что он один и тот же для любого организма, начиная от вирусов и кончая высшими животными и человеком. Участок молекулы ДНК, составляющий один ген, определяет, как правило, последовательность аминокислот в молекуле одного белка (или в одной полипептидной цепи, если данный белок состоит из неск. таких цепей).

Расшифровка генетич. кода сыграла выдающуюся роль в выяснении механизма биосинтеза белка - процесса, включающего перенос заключённой в ДНК генетич. информации на молекулы т. н. информационной, или матричной, РНК (и-РНК). Этот процесс, сущность к-рого составляет синтез и-РНК на матрице ДНК, получил название транскрипции. Информационная РНК связывается затем с особыми клеточными структурами - рибосомами, на к-рых и осуществляется синтез полипептидной цепи в соответствии с информацией, записанной в молекуле и-РНК. Этот процесс синтеза полипептидных цепей при посредстве и-РНК назван трансляцией.

Т. о., передача генетич. информации происходит по схеме: ДНК -> РНК -> белок. Это осн. положение (догма), правильность которого установлена мн. исследованиями на различных организмах, получило в 1970 важное дополнение. Американские учёные X. Темин и Д. Балтимор обнаружили, что при репродукции некоторых РНК-содержащих вирусов, вызывающих опухоли у животных, генетическая информация передаётся от РНК вируса к ДНК. Подобная обратная транскрипция осуществляется особыми ферментами, содержащимися в этих вирусах. Явление обратной транскрипции было обнаружено также в нек-рых здоровых клетках животных и человека. Полагают, что обратная транскрипция играет существенную роль в возникновении по крайней мере нек-рых форм злокачественных опухолей и лейкозов, а, возможно, также в процессах дифференцировки при нормальном развитии организмов. Следует подчеркнуть, что открытие обратной транскрипции не противоречит осн. положению М. г. о том, что генетич. информация передаётся от нуклеиновых к-т к белкам, но не может передаваться от белка к нуклеиновым к-там.

Замечат. достижение М. г.- раскрытие генетич. механизмов регуляции синтеза белков в бактериальной клетке. Как показали в 1961 франц. учёные Ф. Жакоб и Ж. Моно, биосинтез белка в бактерии находится под двойным генетич. контролем. С одной стороны, молекулярная структура каждого белка детерминируется соответствующим структурным геном, с другой - возможность синтеза этого белка определяется особым геном-регулятором, который кодирует спец. регуляторный белок, способный связываться со специфическим участком ДНК - т. н. оператором - и при этом "включать" или "выключать" функционирование структурных генов, управляемых этим оператором. Система из одного или неск. структурных генов и их оператора составляет т. н. оперон. Способность регуляторных белков связываться с оператором зависит от взаимодействующих с этими белками низкомолекулярных соединений - эффекторов. Эффекторы поступают в клетку извне или синтезируются ею и служат сигналами о необходимости синтеза этой клеткой тех или иных белков или прекращения их синтеза. Регуляторные белки бывают двух типов: белки-репрессоры, к-рые, связываясь с оператором, блокируют синтез белка (негативная регуляция), и белки-активаторы, к-рые, связываясь с оператором, индуцируют синтез белка (позитивная регуляция). При негативной регуляции в одних случаях репрессор до взаимодействия с эффектором находится в активной форме и, связываясь с оператором, препятствует транскрипции структурных генов оперона (а следовательно, и синтезу соответствующих белков). Эффектор переводит репрессор в неактивную форму, оператор освобождается и транскрипция структурных генов (а отсюда и синтез кодируемых ими белков) становится возможной. В др. случаях взаимодействие репрессора с эффектором переводит репрессор в активную форму, в к-рой он способен связаться с оператором, что и приводит к блокированию синтеза белка. При позитивной регуляции, напротив, только активная форма белка-активатора, способная связываться с оператором, обусловливает синтез белка. Активная форма белка-активатора тоже определяется его взаимодействием с эффектором.

У многоклеточных организмов генетич. регуляция синтеза белка сложнее и пока изучена недостаточно. Однако ясно, что и здесь большую роль играет обратная связь, подобная описанной у бактерий для системы эффектор - регуляторный белок - оператор, причём сигнальными веществами в ряде случаев служат гормоны.

С развитием М. г. более глубоким стало понимание мутационного процесса, т. е. изменения генетической информации. Было показано, что мутации представляют собой либо замены отд. нуклеоти-дов, либо вставки или выпадения нуклео-тидов в молекуле ДНК. Мутации возникают как вследствие случайных ошибок при репликации ДНК, так и в результате повреждающего нуклеиновые к-ты действия различных физич. и химич. агентов -мутагенов; они возникают также из-за изменений т. н. генов-мутаторов, кодирующих ферменты, участвующие в репликации, исправляющие генетич. повреждения и др. Вызываемые мутагенами изменения химич. структуры ДНК либо непосредственно представляют мутации, либо ведут к возникновению мутаций вследствие обусловленных этими изменениями ошибок в ходе последующей репликации ДНК. Значит, доля молекулярных повреждений ДНК, вызываемых мутагенами, не реализуется в мутации, а исправляется (репарируется). Суть явления репарации состоит в том, что у всех организмов имеются гены, кодирующие особые ферменты, способные •"узнавать" повреждённые участки ДНК, "вырезать" их из молекулы и заменять полноценными. Нек-рые из этих ферментов идентифицированы, установлен и механизм их действия, но полного понимания процесса репарации ещё не достигнуто.

Изучение репарации открыло новые подходы к исследованию механизма рекомбинации сцепленных (т. е. лежащих в одной хромосоме) генов, представляющей одну из причин комбинативной изменчивости, к-рая наряду с мутациями играет важную роль в эволюции. Клас-сич. генетикой было показано, что рекомбинация сцепленных генов происходит путём обмена гомологичных хромосом участками (кроссинговер), но тонкий механизм такого обмена оставался неизвестным. Экспериментальные данные последних 10-15 лет позволяют рассматривать внутрихромосомную и внутригенную (межсайтовую) рекомбинацию как ферментативный процесс, происходящий при взаимодействии молекул ДНК. Акт рекомбинации осуществляется путём разрывов и соединения в новом сочетании отрезков полинуклеотидных нитей. При этом разрывы с последующим воссоединением могут происходить как одновременно в обеих нитях ДНК (кроссинговер), так и в пределах одной нити (т. н. п о-лукроссинговер). Чтобы имел место кроссинговер, так же как и для репарации, необходимы разрывы, репарационный синтез повреждённых участков и восстановление нарушенных фосфатных связей, осуществляемые соответствующими ферментами.

М. г. своими замечательными открытиями оказала плодотворное влияние на все биологич. науки. Она явилась той основой, на к-рой выросла молекулярная биология, значительно ускорила прогресс биохимии, биофизики, цитологии, микробиологии, вирусологии, биологии развития, открыла новые подходы к пониманию происхождения жизни и эволюции орга-нич. мира. Вместе с тем М. г., позволившая глубоко проникнуть в природу важнейших жизненных процессов и успешно продолжающая их исследование, отнюдь не претендует на решение многих, в т. ч. и генетических, проблем, касающихся целостного организма, а тем более совокупностей организмов - популяций, видов, биоценозов и т. д., где преобладают закономерности, изучение к-рых требует иных методов, чем те, какие использует М. г.

Достижения М. г., внёсшие огромный теоретич. вклад в общую биологию, несомненно будут широко использованы в практике с. х-ва и медицины (т. н. генная инженерия путём замены вредных генов полезными, в т. ч. искусственно синтезированными; управление мутац. процессом; борьба с вирусными болезнями и злокачественными опухолями путём вмешательства в процессы репликации нуклеиновых к-т и опухолеродных вирусов; управление развитием организмов посредством воздействия на генетич. механизмы синтеза белка и т. д.). Перспективность практич. применения достижений М. г. подтверждается успехами, достигнутыми на модельных объектах. Так, у наиболее изученных в генетич. отношении видов бактерий удаётся получать мутации любого гена, лишать клетку к.-л. гена или привносить в неё желаемый ген извне, регулировать функции мн. генов. Несмотря на то что генетич. свойства клеток эукариотов изучены на молекулярном уровне ещё недостаточно, увенчались успехом первые попытки введения нек-рых генов в клетки млекопитающих с помощью вирусов, осуществлена гибридизация соматических клеток и др. Напр., в 1971 амер. учёный С. Меррилл с сотрудниками, культивируя вне организма клетки человека, больного галактоземией (такие клетки неспособны вырабатывать один из ферментов, необходимых для утилизации молочного сахара, что и является причиной этой тяжёлой наследственной болезни), ввели в эти клетки неинфекционный для них бактериальный вирус, содержащий ген, кодирующий данный фермент. В результате клетки "излечились" - стали синтезировать недостающий фермент и передавать эту способность последующим клеточным поколениям. Уже сейчас данные М. г. используют при создании медикаментов, применяемых для профилактики и лечения новообразований, лейкозов, вирусных инфекций, лучевых поражений, при изыскании новых мутагенов и т. д.

Лит.: Вагнер Р., Митчелл Г., Генетика и обмен веществ, пер. с англ., М., 1958; Молекулярная генетика. Сб. ст., пер. с англ., ч. 1, М., 1964; Кольцов Н. К., Наследственные молекулы, "Бюлл. Московского об-ва испытателей природы. Отдел биологический", 1965, т. 70, в. 4, с. 75-104; Б р е с л е р С. Е., Введение в молекулярную биологию, 3 изд., М.-Л., 1973; У о т  с о н Д ж.. Молекулярная биология гена, пер. с англ., М., 1967; Гершкович И., Генетика, пер. с англ., М., 1968; X е с и н Р. Б., Энзимология генетических процессов, в кн.: Вопросы молекулярной генетики и генетики микроорганизмов, М., 1968; Р а т н е р В. А., Принципы организации и механизмы моле-кулярно-генетических процессов, Новосибирск, 1972; S t е n t G. S., Molecular genetics, S. F., 1971; E i 8 e n M., Selforganization of matter and the evolution of biological mac-romolecules, "Naturwissenschaften", 1971, Jg. 58, H. 10; Baltimore D., Viral RNA-dependent DNA polymerase, "Nature", 1970, v. 226, № 5252; Temin H., Mizutani S., RNA-dependent DNA polymerase in virions of Rous sarcoma virus, "Nature", 1970, v. 226, № 5252; Kacian D. L. [a. o.], In vitro synthesis of DNA components of human genes for globins, "Nature. New Biology", 1972, v. 235, № 58.

С. М. Гершензон, Е. И. Черепенко.

МОЛЕКУЛЯРНАЯ ДИСТИЛЛЯЦИЯ, способ разделения жидких смесей в высоком вакууме. См. Дистилляция.

МОЛЕКУЛЯРНАЯ МАССА, молекулярный вес, значение массы молекулы, выраженное в атомных единицах массы. Практически М. м. равна сумме масс всех атомов, входящих в состав молекулы; умножение М. м. на принятую величину атомной единицы массы (1,66043 ± 0,00031)-10-24 г даёт массу молекулы в граммах.

Понятие М. м. прочно вошло в науку после того, как в результате работ С. Канниццаро, развившего взгляды А. Авогадро, были чётко сформулированы различия между атомом и молекулой; уточнению понятия М. м. способствовали открытие Ф. Содди явления изотопии (см. Изотопы) и разработка Ф. Астоном масс-спектрометрического метода определения масс.

Понятие М. м. тесно связано с определением молекулы; однако оно приложимо не только к веществам, в к-рых молекулы существуют раздельно (газы, пары, нек-рые жидкости и растворы, молекулярные кристаллы), но и к остальным случаям (ионные кристаллы и др.).

За М. м. часто принимают ср. массу молекул данного вещества, найденную с учётом относит, содержания изотопов всех элементов, входящих в его состав. Иногда М. м. определяют не для индивидуального вещества, а для смеси различных веществ известного состава. Так, можно рассчитать, что "эффективная" М. м. воздуха равна 29.

М. м.- одна из важнейших констант, характеризующих индивидуальное вещество. М. м. разных веществ сильно различаются между собой. Так, напр., величины М. м. водорода, двуокиси углерода, сахарозы, гормона инсулина соответственно составляют: 2,016; 44,01; 342,296; ок. 6000. М. м. нек-рых биополимеров (белков, нуклеиновых к-т) достигают многих млн. и даже неск. млрд. Величины М. м. широко используются при различных расчётах в химии, физике, технике. Знание М. м. автоматически даёт величину грамм-молекулы (моля), позволяет вычислить плотность газа (пара), рассчитать молярную концентрацию (молярностъ) вещества в растворе, найти истинную формулу соединения по данным о его составе и т. д.

Экспериментальные методы определения М. м. разработаны гл. обр. для газов (паров) и растворов. В основе определения М. м. газов (паров) лежит Авогадро закон. Известно, что объём 1 моля газа (пара) при нормальных условиях (О °С, 1 атм) составляет ок. 22,4 л; поэтому, определив плотность газа (пара), можно найти число его молей, а следовательно, найти и М. м. В случае растворов для определения М. м. чаще всего используют криоскопическийи эбулио-скопический методы (см. Криоскопия и Эбулиоскопия). Экспериментальные методы дают сведения о ср. значении М. м. вещества. Оценку М. м. отд. молекул можно проводить методом масс-спектрометрии.

М. м. являются важной характеристикой высокомолекулярных соединений -полимеров, определяющей их физ. (и технологические) свойства. Макромолекулы. полимеров образуются повторением сравнительно простых звеньев (групп атомов); число мономерных звеньев, входящих в состав различных молекул одного и того же полимерного вещества, различно, вследствие чего М. м. макромолекул таких полимеров также неодинакова. Поэтому при характеристике полимеров обычно говорят о ср. значении М. м.; эта величина даёт представление о ср. числе звеньев в молекулах полимера (о степени полимеризации ).

Полное описание размеров молекул полимера даёт функция распределения по М. м. (молекулярно-мас-совое распределение); эта функция позволяет найти долю молекул (определённого размера) данного полимерного вещества, М. м. к-рых лежат в заданном интервале масс (от М до М + ДМ).

На практике обычно определяют ср. М. м. полимера, исследуя тем или иным методом его раствор. Свойства растворов могут зависеть от числа молекул, находящихся в растворе (при этом разные по массе молекулы ведут себя совершенно одинаково), от массовой (весовой) концентрации раствора (в этом случае одна большая молекула производит такой же регистрируемый эффект, как и неск. малых) и от др. факторов. Если полимер состоит из неодинаковых молекул, то ср. значения М. м., измеренные разными способами, будут различны. Так, понижение темп-ры замерзания (повышение темп-ры кипения) разбавленного раствора зависит только от числа содержащихся в нём молекул, а не от их размеров, поэтому криоскопич. и эбулиоскопич. методы позволяют находить среднечис-ленную М. м. полимера ("простое" среднее). Интенсивность света, рассеянного раствором полимера, зависит от массы вещества, находящегося в растворе, а не от числа молекул; поэтому метод, основанный на измерении интенсивности рассеянного света, используется для определения величины М. м. полимера, усреднённой по массе. Др. методы (седи-ментационного равновесия, вискозимет-рический и т. д.) позволяют найти иные ср. значения М. м. полимеров. Сравнивая ср. величины М. м., определённые разными методами, можно сделать вывод о молекулярно-массовом распределении. В простейшем случае, когда среднечис-ленная М. м. полимера совпадает со значением М. м., усреднённой по массе, можно сделать вывод, что полимер состоит из одинаковых молекул (т. е. монодисперсен).

Лит.: Некрасов Б. В., Основы общей химии, т. 1, М., 1973; Г у г г е н-гейм Э.А. иПруДж., Физико-химические расчёты, пер. с англ., М., 1958; Г у-бен-Вейль, Методы органической химии, т. 2, М., 1967. См. также лит. при ст. Макромолекула. С. С. Бердоносов.

МОЛЕКУЛЯРНАЯ ОПТИКА, раздел оптики, в к-ром изучаются процессы взаимодействия оптического излучения с веществом, существенно зависящие от атом-но-молекулярной структуры вещества. М. о. устанавливает связь между характером единичных актов взаимодействия световой волны с частицами (молекулами, атомами, ионами) и макроскопич. параметрами состоящей из этих частиц среды (напр., её показателем преломления). С этой точки зрения в М. о. рассматриваются дисперсия света, преломление света и - наиболее широко - рассеяние света. Изучение распространения света в кристаллах, обладающих естественной оптической анизотропией, составляет предмет кристаллооптики. Оптическая анизотропия в изотропных от природы средах может вызываться действием на них различных внешних полей: электрического (см. Керра эффект, Поккелъса эффект), магнитного (см. Коттона - Мутона эффект), поля механич. или гидродинамич. сил (явления фотоупругости и двойного лучепреломления в потоке жидкости). В средах, для к-рых характерна оптическая активность (как естественная, так и возникающая при наложении внешнего магнитного поля, см. Фарадея эффект), происходит вращение плоскости поляризации света. Все эти явления, рассматриваемые в М. о., дают ценную информацию о свойствах веществ и строении составляющих их частиц.

Процесс взаимодействия световой волны с частицами вещества определяется гл. обр. поляризуемостью этих частиц (см. Поляризуемость атомов, ионов и молекул). Объяснение большинства молекулярно-оптических (МО) явлений дала уже классич. электронная теория, однако для их полного теоретич. истолкования необходима квантовая механика, к-рая позволяет связать МО постоянные со значениями уровней энергии молекул и вероятностями квантовых переходов между этими уровнями (см. Молекула, Молекулярные спектры).

Приложения М. о. разнообразны и расширились с появлением источников мощного когерентного излучения - лазеров, Наиболее широко методы М. о. применяются для исследования структуры и характеристик отд. молекул. Изучение света, рассеиваемого различными средами даёт сведения (часто уникальные) о строении этих сред - жидкостей, кристаллов высокомолекулярных соединений, атмосферных образований (облаков, туманов и пр.), а также об особенностях теплового движения частиц в средах. М. о. тесно связана с молекулярной спектроскопией Разрабатываются перспективные МО методы исследования космич. тел и сред. Лит.: Волькенштейн М. В., Мо лекулярная оптика, М.- Л., 1951; Б о р н М Вольф Э., Основы оптики, пер. с англ. 2 изд., М., 1973; Волькенштейн М. В. Строение н физические свойства молекул М. -Л., 1955. В. А. Замкоб

МОЛЕКУЛЯРНАЯ РЕФРАКЦИЯ, см Рефракция молекулярная.

МОЛЕКУЛЯРНАЯ ФИЗИКА, раздел физики, в к-ром изучаются физич. свой ства тел в различных агрегатных состояниях на основе рассмотрения их микроскопич. (молекулярного) строения. Задачи М. ф. решаются методами физич. статистики, термодинамики и физич. кинетики, они связаны с изучением движения и взаимодействия частиц (атомов, молекул, ионов), составляющих физич. тела. Атомистич. представления о строении вещества, высказанные ещё философами древности (см. Атомизм), в нач. 19 в. были с успехом применены в химии (Дж. Дальтон, 1801), что в значит. мере содействовало развитию М. ф. Первьм сформировавшимся разделом М. ф. была кинетическая теория газов. В результате работ Дж. Максвелла (1858-60), Л. Больцмана (1868) и Дж. Гиббсс, (1871 -1902), развивавших молекулярно-кинетич. теорию газов, была создана классич. статистическая физика.

Количественные представления о взаимодействии молекул (молекулярных силах) начали развиваться в теории капиллярных явлений. Классич. работы в этой области А. Клеро (1743), П. Лапласа (1806), Т. Юнга (1805), С. Пуассона, К. Гаусса (1830-31), Дж. Гиббса (1874-1878), И. С. Громеки (1879, 1886) и др. положили начало теории поверхностных явлений. Межмолекулярные взаимодействия были учтены Я. ван дер Ваальсом (1873) при объяснении физич. свойств реальных газов и жидкостей.

В нач. 20 в. М. ф. вступает в новый период своего развития, характеризующийся доказательствами реального строения тел из молекул в работах Ж. Перрена и Т. Сведберга (1906), М. Смолуховского и А. Эйнштейна (1904-06), касающихся броуновского движения микрочастиц, и исследованиями молекулярной структуры веществ. Применение для этих целей дифракции рентгеновских лучей в работах М. Лауэ (1912), У. Г. Брэгга и У. Л. Брэгга (1913), Г. В. Вульфа (1913), А. Ф. Иоффе (1924), В. Стюарда (1927-31), Дж. Бернала (1933), В. И. Данилова (1936) и др., а в дальнейшем и дифракции электронов и нейтронов дало возможность получить точные данные о строении кристаллич. твёрдых тел и жидкостей. Учение о межмолекулярных взаимодействиях на основании представлений квантовой механики получило развитие в работах М. Борна (1937-39), П. Дебая (30-е гг. 20 в.), Ф. Лондона (1927) и В. Гейтлера (1927). Теория переходов из одного агрегатного состояния в другое, намеченная в 19 в. Я. ван дер Ваальсом и У. Томсоном (Кельвином) и развитая в работах Дж. Гиббса, Л.Ландау (1937), М. Фольмера (30-е гг. 20 в.) и их последователей, превратилась в совр. теорию образования новой фазы - важный самостоятельный раздел М. ф. Объединение статистич. методов с совр. представлениями о структуре веществ в работах Я. И. Френкеля (1926 и др.), Г. Эйринга (1935-36), Дж. Бернала и др. привело к М. ф. жидких и твёрдых тел.

Круг вопросов, охватываемых М. ф., очень широк. В ней рассматриваются строение газов, жидкостей и твёрдых тел, их изменение под влиянием внешних условий (давления, темп-ры, электрич. и магнитного полей), явления переноса (диффузия, теплопроводность, внутр. трение), фазовое равновесие и процессы фазовых переходов (кристаллизация и плавление, испарение и конденсация и др.), критическое состояние вещества, поверхностные явления на границах раздела различных фаз.

Интенсивное развитие М. ф. привело к выделению из неё ряда крупных самостоятельных разделов, таких, напр., как статистич. физика, кинетика физическая, физика твёрдого тела, физическая химия, молекулярная биология.

Совр. наука и техника используют всё большее число новых веществ и материалов. Выявившиеся особенности строения этих тел привели к развитию различных науч. подходов к их исследованию. Так, на основе общих теоретич. представлений М. ф. получили развитие такие спец. области науки, как физика металлов, физика полимеров, физика плазмы, кристаллофизика, физико-химия дисперсных систем и поверхностных явлений, теория тепло- и массопереноса. Сюда же можно отнести также новую область науки -Физико-химическую механику, к-рая составляет теоретич. основу совр. материаловедения, указывая пути создания технически важных материалов с требуемыми физич. свойствами. При всём различии объектов и методов исследования здесь сохраняется, однако, осн. идея М. ф.: описание макроскопич. свойств вещества, исходя из особенностей микроскопич. (молекулярной) картины его строения.

Лит.: Кикоин И. К. и Кикоин А. К., Молекулярная физика, М., 1963; Гиршфельдер Дж., Кертисс Ч. и Б е р д Р., Молекулярная теория газов и жидкостей, пер. с англ., М., 1961; Френкель Я. И., Собр. избр. трудов, т. 3.-Кинетическая теория жидкостей, М.- Л., 1959; Франк-Каменецкий Д. А.^ Диффузия и теплопередача в химической кинетике, 2 изд., М., 1967; К и т т е л ь Ч., Введение в физику твёрдого тела, пер. с англ., М., 1957; ЛихтманВ.И., ЩукинЕ.Д., Р е б и н д е р П. А., Физико-химическая механика металлов, М., 1962.

П. А. Ребиндер, Б. В. Д,ерягин, Н. В. Чураев.

МОЛЕКУЛЯРНАЯ ЭЛЕКТРОНИКА, первоначальное название одного из направлений микроэлектроники. Вместо термина "М. э.", получившего нек-рое распространение в 60-е гг. 20 в., с нач. 70-х гг. применяют другой термин -функциональная электроника.

МОЛЕКУЛЯРНОЕ ТЕЧЕНИЕ, течение разреженного газа (молекул, атомов, ионов или электронов), при к-ром свойства потока существенно зависят от беспорядочного движения молекул, в отличие от течений, где газ рассматривается как сплошная среда. М. т. имеет место при полёте тел в верхних слоях атмосферы, в вакуумных системах и т. д. При М. т. молекулы (или др. частицы) газа участвуют, с одной стороны, в поступательном движении всего газа в целом, а с другой- двигаются хаотически и независимо друг от друга. Причём в любом рассматриваемом"" объёме молекулы газа могут иметь самые различные скорости. Поэтому основой теоретич. рассмотрения М. т. является кинетическая теория газов. Макроскопич. свойства невязкого, сжимаемого, изоэнтропического течения удовлетворительно описываются простейшей моделью молекул в виде упругих гладких шаров, к-рые подчиняются максвелловскому закону распределения скоростей (см. Максвелла распределение). Для описания вязкого, неизоэнтропич. М. т. необходимо пользоваться более сложной моделью молекул и функцией распределения, к-рая несколько отличается от функции распределения Максвелла.

М. т. исследуются в аэродинамике разреженных газов.

Лит.: Паттерсон Г. Н., Молекулярное течение газов, пер. с англ., М., 1960; Чепмен С., Каулинг Т., Математическая теория неоднородных газов, пер. с англ., М., 1960; Аэродинамика разреженных газов. Сб., под ред. С. В. Валландера, Л., 1963; Коган М. Н., Динамика разреженного газа, М., 1967. Л.В.Козлов.

МОЛЕКУЛЯРНОЙ БИОЛОГИИ ИНСТИТУТ АН СССР, головное н.-и. учреждение в области молекулярной биологии. Организован в 1957 (до 1965 -Ин-т радиац. и физико-химич. биологии). Основатель и директор ин-та - В. А. Эн-гельгардт. Осн. направления н.-и. работ: передача и реализация наследственной информации, молекулярные механизмы биосинтеза белка, химич. и физич. основы действия ферментов, связь структуры нуклеиновых к-т и белков с их функциями в клетке, макромолекуляр-ная организация хромосом, разработка физич. методов исследования макромолекул. В М. б. и. расшифрована первичная структура двух транспортных рибонуклеиновых к-т (т-РНК); экспериментально обоснована и сформулирована теория регуляции функционирования генома у высших организмов; впервые в СССР определена последовательность аминокислот в крупной молекуле белка-фермента - аспартатамино-трансферазы (совм. с Ин-том биоорганической химии им. М. М. Шемякина АН СССР); предложены новые подходы к изучению строения активных центров ферментов (ингибиторный анализ) и функциональных участков РНК (метод "разрезанных молекул"); разработаны новые методы структурных исследований белков и нуклеиновых к-т. К нач. 1973 в М. б. и. было 13 лабораторий. Совм. с Советом по проблемам молекулярной биологии АН СССР ин-т организует меж-дунар. совещания и симпозиумы. Труды сотрудников М. б. и. публикуются в журналах: "Молекулярная биология" (с 1967), "Биохимия" (с 1936), "Цитология" (с 1959), "Доклады АН СССР" (с 1933), "Биофизика" (с 1956), "Biochimica et Bio-physica Acta" ((N. Y.-Amst., с 1947), "FEBS Letters" (Amst., с 1968), "European Journal of Biochemistry" (В., с 1967), в сборниках и в виде монографий.

Лит.: Институт молекулярной биологии, М., 1971. М. Я. Тимофеева.

"МОЛЕКУЛЯРНЫЕ БОЛЕЗНИ", врождённые ошибки метаболизма, заболевания, обусловленные наследственными нарушениями обмена веществ. Термин "М. б." предложен амер. химиком Л. Полингом. В нач. 20 в. англ, врач А. Э. Гаррод, изучая ряд наследственных заболеваний, предположил, что они возникают в результате пониженной активности или полного отсутствия фермента, контролирующего определённый этап обмена веществ. Так, появление гомогентизиновой к-ты в моче больных алькаптонурией обусловлено отсутствием окисляющего её фермента (впоследствии выяснилось, что в этом случае образуется неактивная форма фермента); альбинизм вызван блокадой образования пигментов меланинов вследствие недостаточности одного из необходимых ферментов - тирозиназы и т. д. Идеи Гаррода получили всеобщее признание и конкретную химич. интерпретацию спустя неск. десятилетий. Решающими для понимания механизмов возникновения "М. б." оказались исследования изменений биосинтеза у микроорганизмов, возникающих при замене нормального гена мутантным. Каждый нормальный ген определяет (кодирует) синтез, как правило, строго определённого фермента, т. е. нормального белка (см. Белки, Генетический код). Изучение биохимич. мутантов (работы гл. оор. амер. генетиков Дж. Бидла и Э. Тейтема, 1941) показало, что мутация гена приводит к отсутствию фермента или изменению его активности, т. е. белок либо не синтезируется вообще, либо синтезируется с изменённой первичной структурой (иной последовательностью аминокислот в полипептидной цепи). Изменение первичной структуры белка (ферментного, структурного, плазмы крови), по-видимому, не влияет на его свойства ("молчащие" мутации). Однако в ряде случаев (напр., при изменении активного центра фермента) происходит изменение свойств, а следовательно, и функций белка. Т. о., все "М. б." связаны либо с утратой к.-л. нормального белка, либо с изменением его ферментативных или физ.-хим. свойств.

Поскольку каждый фермент контролирует определённую реакцию обмена веществ, его отсутствие или неспособность осуществлять свою функцию приводят к остановке нормального пути метаболизма на стадии биосинтеза вещества, являющегося субстратом этого фермента. Заболевание развивается в результате недостатка в организме конечного продукта, синтез к-рого блокирован, либо в результате накопления предшественника блокированной реакции, избыток которого нарушает обменные процессы.

"М. б." включают расстройства обмена аминокислот (аминоацидурии), углеводов (гликозурии), липидов (липидозы и лейкодистрофии), пуринов, пиримиди-нов. Всего известно св. 1000 "М. б.". Частота каждой из "М. б." относительно невелика: одна из самых распространённых "М. б."-фенилкетонурия - встречается со ср. частотой 1 : 10 000. Некоторые из наследственных нарушений обмена не влекут за собой клинич. последствий (напр., неспособность ощущать вкус или запах определённых веществ), другие же протекают очень тяжело. Ряд "М. б." проявляется лишь при воздействии провоцирующих факторов внешней среды. При своевременном диагнозе нек-рые "М. б." поддаются эффективному предупреждению и лечению. Поскольку эффект мутантного гена осуществляется преим. в форме изменения строго определённого биосинтеза, установление наследственного характера болезни (с помощью различных методов биохимич. анализа) открывает возможность воздействия на всю цепь реакций, ведущих к биохимич. и физио-логич. аномалиям. Заместительная терапия применяется при гормональных заболеваниях (сахарный диабет лечат инсулином, наследственные формы гипоти-реоза - гормоном щитовидной железы). Для лечения ряда "М. б." эффективно применение ограничительных диет, из к-рых изъято вещество (аминокислота, углевод), накапливающееся в организме. Предупреждение "М. б." осуществляется путём медико-генетич. консультирования семей, в к-рых выявлены носители "М. б.". Для ряда "М. б" разработаны методы ранней (в т. ч. внутриутробной) диагностики. Нек-рые"М. б.", напр. т. н. эритроцитопатии, широко распространились в Африке и странах Средиземноморья, т. к. превращают аномальный эритроцит в среду, неблагоприятную для развития малярийного плазмодия (см. Гемоглобинопатии, Малярия). См. также Генетика медицинская, Генетика человека, Медико-генетическая консультация.

Лит.: Цукеркандль Э., П о-л и н г Л., Молекулярные болезни, эволюция и генная разнородность, в сб.: Горизонты биохимии, пер. с англ., М., 1964; Э Ф р о-и м с о н В. П., Введение в медицинскую генетику, 2 изд., М., 1968; "Журнал Всесоюзного химического общества им. Д. И. Менделеева", 1970, т. 15, № 6 (посвящен биохимии наследственных болезней человека); Проблемы медицинской генетики, М., 1970; Gar-rod А. Е., Inborn errors of metabolism, L., 1963; The metabolic basis of inherited disease, 2 ed., N. Y.- [a. o.], 1966.

К. Д. Краснопольская.

МОЛЕКУЛЯРНЫЕ И АТОМНЫЕ ПУЧКИ, направленные потоки молекул или атомов, движущихся в вакууме практически без столкновений друг с другом и с молекулами остаточных газов. М. и а. п. позволяют изучать свойства отд. частиц, пренебрегая эффектами, обусловленными столкновениями, кроме тех случаев, когда сами столкновения являются объектом исследований.

Первый эксперимент с атомным пучком был осуществлён в 1911 франц. учёным Л. Дюнуайе, к-рый продемонстрировал прямолинейный пролёт в вакууме атомов Na. В дальнейшем эти эксперименты были продолжены О. Штерном с сотрудниками в Гамбурге (1929), к-рые использовали М. и а. п. для измерения скорости молекул и эффективных сечений их соударений друг с другом, а также для исследования явлений, обусловленных электронными спинами и магнитными моментами атомных ядер (см. Ядро атомное). В 1937 И. Раби использовал М. и а. п. в изобретённом им резонансном методе, к-рый вначале применялся для измерения магнитных моментов ядер (1937-40), а в дальнейшем стал осн. методом радиоспектроскопии, позволившим измерить с большой точностью фундаментальные характеристики молекул, атомов и атомных ядер (Н. Рамзей и др.).

Рис. 1. Схема опыта для изучения химических реакций, происходящих при пересечении пучка атомов водорода с пучком двухатомных молекул щелочного металла. К1, К2, К3 - коллимнрующие щели.

Источник, в к-ром формируются М. и а. п., представляет собой камеру, соединённую с высоковакуумным объёмом при помощи отверстия в тонкой стенке или узкого капилляра в толстой стенке. Исследуемые молекулы или атомы вводятся в камеру источника в виде газа или пара при давлении неск. мм рт. ст. Для формирования М. и а. п. давление газа в источнике должно быть достаточно малым, чтобы ср. длина I свободного пробега частиц внутри источника была равна или несколько больше диаметра соединит, отверстия. В этом случае частицы вылетают из источника независимо друг от друга. Для капилляра длина l должна быть соизмерима также с длиной капилляра. Чрезмерное увеличение l за счёт уменьшения давления в источнике, не улучшая существенно свойств М. и а. п., уменьшает их интенсивность. Для увеличения интенсивности пучков применяют источники с неск. отверстиями или капиллярами, расстояние между к-рыми должно быть несколько больше их диаметра. Соударения с частицами остаточного газа разрушают М. и а. п. тем быстрее, чем хуже вакуум. Длина М. и а. п. в идеальном вакууме была бы чрезвычайно велика, т. к. возможны были бы только соударения "догона".

Молекулярное взаимодействие. Метод М. и а. п. даёт возможность детально изучать акт столкновения между двумя частицами, в отличие от химич. и газоди-намич. методов, в к-рых из-за множественных столкновений частиц друг с другом наблюдаются лишь усреднённые эффекты .

В нек-рых из этих экспериментов измеряются эффективные сечения упругих и неупругих соударений частиц, движущихся под разными углами и с разными скоростями. В др. экспериментах наблюдаются химич. реакции между частицами и изучается угловое и энергетич. распределение продуктов реакции (Лестер, 1971; Дж.Росс, 1966; Р. Дж. Горд он и др., 1971). Типичный эксперимент второго рода показан на рис. 1. Атомы водорода вылетают из источника в вакуумную камеру, где они сталкиваются с двухатомными молекулами щелочного металла, напр. К2- Угловое распределение продуктов реакции измеряется с помощью детекторов с поверхностной ионизацией (горячие нити Pt и W). Т. к. вольфрамовый детектор одинаково чувствителен к частицам К3 и КОН, а платиновый - менее чувствителен к КОН, то, комбинируя оба детектора, можно различать эти молекулы. Иногда М. и а. п. предварительно поляризуют или, наоборот, измеряют появляющуюся поляризацию. В нек-рых экспериментах исследуется возбуждение колебательных уровней энергии у продуктов реакции.

Резонансные эксперименты (метод Раби). Частицы, вылетая из источника в вакуум (13,3 мн/м2или 10-7 мм рт. ст.), пролетают через неоднородное магнитное поле, создаваемое магнитом А (рис. 2). Неоднородное поле А искривляет их траектории, что обусловлено взаимодействием их магнитных моментов с неоднородным магнитным полем. Далее частицы пролетают через коллиматор и попадают в область детектора, где происходит компенсация искривления траектории в неоднородном магнитном поле, создаваемом магнитом В. Конфигурация поля В в точности противоположна конфигурации поля А. Для индентификации молекул их ионизируют (электронным ударом) и пропускают через масс-спектрометр, после чего они регистрируются электронным умножителем, соединённым с фазо-чувствительным детектором. Плавно изменяя частоту v колебаний электромагнитного поля в зазоре магнита С, создающего однородное магнитное поле, измеряют интенсивность пучка, регистрируемого детектором. Если частота v удовлетворяет воровскому условию:
1634-1.jpg

где п - Планка постоянная, то молекулы под действием электромагнитного поля, возбуждаемого в резонаторе Р, могут переходить из состояния с энергией "Л в состояние с энергией Е2 и обратно.

Рис. 2. Схема эксперимента по наблюдению магнитного резонанса в молекулярном пучке. Пролёт частицы через прибор определяется по искривлению её траектории; отклонения увеличены относительно типичных размеров прибора (длина прибора 3 м, максимальное поперечное сечение 0,01 см). Р - резонатор, в котором возбуждается электромагнитное поле резонансной частоты; H1 - форвакуум-ный насос. Н2 - высоковакуумный насос; А, В и С - электромагниты.

Если по магнитным свойствам состояние Е1отличается от состояния Е2, то поле В после перехода молекулы обычно компенсирует отклонение, вызванное полем А, не для всех молекул пучка; часть молекул, испытавшая переход Е1i->Е2> движется по траектории, показанной пунктиром (рис. 2). При выполнении условия (1) интенсивность, регистрируемая детектором, имеет минимум. График зависимости интенсивности от частоты представляет собой радиочастотный спектр частиц. Зная резонансную частоту из условия (1), можно определить уровни энергии молекул (см. Магнитный резонанс).

Метод пароэлектрического резонанса аналогичен методу магнитного резонанса за исключением того, что изменения траектории обусловлены взаимодействием электрич. моментов молекул с неоднородными электрич. полями, а квантовые переходы между ними вызваны колебаниями электрич. поля в резонаторе. Интенсивность пучка может быть увеличена за счёт использования 4-полюсных или 6-полюс-ных электродов, создающих пространственную фокусировку пучка. Применяется также сочетание обоих методов, напр, однородное постоянное электрич. поле используют в экспериментах с магнитным резонансом, а однородное магнитное поле в опытах с параэлектрич. резонансом (К. Мак-Адан, Н. Рамзей и др., 1972). Эксперименты с магнитным и параэлект-рическим резонансами в М. и а. п. дали большое количество информации о строении молекул, атомов и атомных ядер. Этим методом были измерены спины ядер, магнитные и электрические квадруполь-ные моменты стабильных и радиоактивных ядер. В частности, был обнаружен электрич. квадрупольный момент дейтрона, что впервые указало на существование тензорных сил между элементарными частицами. Была измерена с высокой точностью тонкая структура атомных спектров, в результате чего в экспериментах с атомарным водородом был открыт Лэмбовский сдвиг, послуживший источником серии революц. теоретич. открытий в квантовой электродинамике. Измерения сверхтонкой структуры спектров дали первые указания на аномальность магнитного момента электрона, к-рая впоследствии была измерена непосредственно. В экспериментах с М. и а. п. были осуществлены два независимых измерения постоянной тонкой структуры и получено пока единственное доказательство существования у ядер электрич. октупольных моментов. Резонансные эксперименты с М. и а. п. позволили измерить вращательные магнитные моменты и электрич. дипольные моменты молекул, энергию взаимодействия ядерных магнитных моментов с вращательными магнитными моментами молекул, зависимость электрических и магнитных свойств от ориентации молекул; определить квадрупольные моменты молекул, энергию межъядерных магнитных взаимодействий в молекулах и т. д. Частота колебаний, соответствующая линиям сверхтонкой структуры магнитного резонанса в М. и а. п., является основой для определения секунды в пассивных стандартах частоты (см. Квантовые стандарты частоты, Квантовые часы). Возможность пространственной фокусировки М. и а. п., содержащих частицы в определённых энергетич. состояниях при помощи неоднородных электрических или магнитных полей, позволила использовать М. и а. п. для накопления частиц в состояниях с более высокой энергией (т. е. для создания инверсии населённостей), что необходимо для осуществления мазера. Первый мазер был осуществлён на пучке молекул аммиака (см. Молекулярный генератор). Мазер на пучке атомов водорода широко использовался как для исследования атома водорода, так и для создания активного квантового стандарта частоты.

Лит.: Смит К. Ф-, Молекулярные пучки, пер. с англ., М., 1959; Рамзей Н., Молекулярные пучки, пер. с англ., М-, I960,' Kusch P., Huges V. W., Atomic and molecular beam spectroscopy, в кн.: Handbuch der Physik, Hrsg. von S. Fliigge, Bd 37, Tl 1, В.- [u.a.l, 1959; Zorn J. C., English Т. С., Methods of experimental physics, v. 3, N. Y., 1973. Я. Ф. Рамзей (США).

МОЛЕКУЛЯРНЫЕ КРИСТАЛЛЫ, кристаллы, образованные из молекул, связанных друг с другом слабыми ван-дер-ваальсовыми силами (см. Межмолекулярное взаимодействие) или водородной связью. Внутри молекул между атомами действует более прочная кова-лентная связь. Фазовые превращения М. к.- плавление, возгонка, полиморфные переходы (см. Полиморфизм) - происходят, как правило, без разрушения отд. молекул.

Большинство М. к.- кристаллы орга-нич. соединений, типичный М. к.- нафталин. М. к. образуют также нек-рые простые вещества (Н2, галогены, N2, O2, S8), бинарные соединения типа H2jO, СО2, N2O4, металлоорганические соединения и нек-рые комплексные соединения. КМ. к. относятся и кристаллы полимеров, а также кристаллы белков, нуклеиновых кислот. Особым случаем М. к. являются кристаллы отвердевших инертных газов, в которых ван-дер-ваальсовы силы связывают между собой не молекулы, а атомы.

Для типичных М. к. характерны низкие температуры плавления, большие коэфф. теплового расширения, высокая сжимаемость, малая твёрдость. В обычных условиях большинство М. к. - диэлектрики. Нек-рые М. к., напр, органические красители, -полупроводники.

Лит.: Китайгородский А. И., Молекулярные кристаллы, М., 1971; Б о-кий Г. Б., Кристаллохимия, М., 1971.

П. М. Зоркий.

МОЛЕКУЛЯРНЫЕ СИТА, сорбенты, избирательно поглощающие из окружающей среды вещества, молекулы к-рых не превышают определённых размеров. Такие сорбенты как бы отсеивают крупные молекулы от мелких. Различают минеральные (неорганические) и органич. М. с. Неорганич. М. с. имеют жёсткую кристаллич. структуру, в к-рой находятся полости, соединённые между собой узкими каналами-опорами" или "окнами". Малые размеры "окон" препятствуют диффузии крупных молекул во внутр. полости сорбента. Нек-рые алюмосиликаты - природные и синте-тич. цеолиты - характерные представители М. с. этого типа.

Органич. М. с.- гелевидные сорбенты, получаемые на основе высокомолекулярных соединений. Структура таких сорбентов представляет собой пространственную сетку из цепочечных макромолекул, "сшитых" в отд. точках химич. связями. Из гелевидных М. с. пром. производства наиболее распространены различные типы сефадекса - сорбента на основе декстрана (высокомолекулярного полисахарида). М. с., содержащие ионогенные (диссоциирующие на ионы) группы и способные к ионному обмену, наз. ионитовыми ситами. В отличие от обычных ионитов, они избирательно поглощают из раствора лишь достаточно малые ионы, исключая из ионообменного процесса крупные ионы, диффузия к-рых сквозь структурную сетку сорбента затруднена.

М. с. выпускают в виде порошка, зёрен неправильной формы, сферич. гранул. Их используют для очистки веществ от нежелательных примесей, фракционирования синтетич. полимеров, хрома-тографич. разделения белков, углеводов, гормонов, антибиотиков и пр.

Лит.: Детерман Г., Гель-хромато-графия, пер. с нем., М., 1970. Л. А. Шиц.

МОЛЕКУЛЯРНЫЕ СПЕКТРЫ, оптические спектры испускания и поглощения, а также комбинационного рассеяния света, принадлежащие свободным или слабо связанным между собой молекулам. М. с. имеют сложную структуру. Типичные М. с.- полосатые, они наблюдаются в испускании и поглощении и в комбинационном рассеянии в виде совокупности более или менее узких полос в ультрафиолетовой, видимой и близкой инфракрасной областях, распадающихся при достаточной разрешающей силе применяемых спектральных приборов на совокупность тесно расположенных линий. Конкретная структура М. с. различна для различных молекул и, вообще говоря, усложняется с увеличением числа атомов в молекуле. Для весьма сложных молекул видимые и ультрафиолетовые спектры состоят из немногих широких сплошных полос; спектры таких молекул сходны между собой. М. с. возникают пои квантовые пепе-
1634-2.jpg

где hv - энергия испускаемого или поглощаемого фотона частоты v (h -Планка постоянная). При комбинационном рассеянии hv равно разности энергий падающего и рассеянного фотонов. М. с. гораздо сложнее линейчатых атомных спектров, что определяется большей сложностью внутр. движений в молекуле, чем в атомах. Наряду с движением электронов относительно двух или более ядер в молекулах происходят колебательное движение ядер (вместе с окружающими их внутр. электронами) около положений равновесия и вращательное движение молекулы как целого. Этим трём видам движений - электронному, колебательному и вращательному - соответствуют три типа уровней энергии и три типа спектров.

Согласно квантовой механике, энергия всех видов движения в молекуле может принимать лишь определённые значения, т. е. она квантуется. Полная энергия молекулы $ приближённо может быть представлена в виде суммы квантованных значений энергий трёх видов её движения:
1634-3.jpg

му электронному состоянию соответствуют определённая равновесная конфигурация и определённое значение Еэл+, наименьшее значение соответствует осн. уровню энергии.

Набор электронных состояний молекулы определяется свойствами её электронной оболочки. В принципе значения Еэл можно рассчитать методами квантовой химии, однако данная задача может быть решена только с помощью приближённых методов и для сравнительно простых молекул. Важнейшую информацию об электронных уровнях молекулы (расположение электронных уровней энергии и их характеристики), определяемую её хим. строением, получают, изучая её М. с.

Рис. 1. Схема уровней энергии двухатомной молекулы: а и б -электронные уровни; v' и v" - квантовые числа колебательных уровней; J' и J" -квантовые числа вращательных уровней.

Весьма важная характеристика заданного электронного уровня энергии -значение квантового числа S, характеризующего абс. величину полного спинового момента всех электронов молекулы. Химически устойчивые молекулы имеют, как правило, чётное число электронов, и для них S = 0,1,2... (для осн. электронного уровня типично значение S = 0, а для возбуждённых - S = 0 и S = 1). Уровни с S = 0 наз. с и н-глетными, с S = 1 - триплет-н ы м и (т. к. взаимодействие в молекуле приводит к их расщеплению на х = = 2S + 1 = 3 подуровня; см. Мулъти-плетностъ). Радикалы свободные имеют, как правило, нечётное число электронов, для них S = 1/2, 3/2, ... и типично как для основного, так и для возбуждённых уровней значение S = 1/2 (д у б-летные уровни, расщепляющиеся на и = 2 подуровня).

Для молекул, равновесная конфигурация к-рых обладает симметрией, электронные уровни можно дополнительно классифицировать. В случае двухатомных и линейных трёхатомных молекул, имеющих ось симметрии (бесконечного порядка), проходящую через ядра всех атомов (см. рис. 2, б), электронные уровни характеризуются значениями квантового числа X, определяющего абс. величину проекции полного орбитального момента всех электронов на ось молекулы. Уровни с ЛЯМБДА = 0,1,2,... обозначаются соответственно СУММА, П, Д, ..., а величина и указывается индексом слева вверху (напр., 3СУММА, 2п, ...). Для молекул, обладающих центром симметрии, напр. СО2 и С6Н6 (см. рис. 2, б, в), все электронные уровни делятся на чётные и нечётные, обозначаемые индексами g и и (в зависимости от того, сохраняет ли волновая функция знак при обращении в центре симметрии или меняет его).

Колебательные уровни энергии (значения Екол) можно найти квантованием колебательного движения, к-рое приближённо считают гармоническим. В простейшем случае двухатомной молекулы (одна колебательная степень свободы, соответствующая изменению межъядерного расстояния r) её рассматривают как гармонич. осциллятор; его квантование даёт равноотстоящие уровни энергии:
1634-4.jpg

где ve - осн. частота гармонич. колебаний молекулы, v - колебательное квантовое число, принимающее значения О, 1, 2, .... На рис. 1 показаны колебательные уровни для двух электронных состояний.

Для каждого электронного состояния многоатомной молекулы, состоящей из N атомов (N => 3) и имеющей f колебательных степеней свободы (f = = 3N - 5 и f = 3N - 6 для линейных и нелинейных молекул соответственно), получается f т. н. нормальных колебаний с частотами vi (i = = l,2,3,...,f ) и сложная система колебательных уровней:
1634-5.jpg

где vi = О, 1, 2, ... - соответствующие колебательные квантовые числа. Набор частот нормальных колебаний в основном электронном состоянии является очень важной характеристикой молекулы, зависящей от её хим. строения. В определённом нормальном колебании участвуют все атомы молекулы или часть их; атомы при этом совершают гармонич. колебания с одной частотой vi, но с различными амплитудами, определяющими форму колебания. Нормальные колебания разделяют по их форме на валентные (при к-рых изменяются длины линий связи) и деформационные (при к-рых изменяются углы между хим. связями - валентные углы). Число различных частот колебаний для молекул низкой симметрии (не имеющих осей симметрии порядка выше 2) равно 2, и все колебания являются невырожденными, а для более симметричных молекул имеются дважды и трижды вырожденные колебания (пары и тройки совпадающих по частоте колебаний). Напр., у нелинейной трёхатомной молекулы Н2О (рис. 2, a) f = 3 и возможны три невырожденных колебания (два валентных и однс деформационное). Более симметричная линейная трёхатомная молекула СО2 (рис. 2, б) имеет f = 4 - два невырожденных колебания (валентных) и однс дважды вырожденное (деформационное). Для плоской высокосимметричной молекулы С6Н6 (рис. 2, в) получается f = 30 - десять невырожденных и 1C дважды вырожденных колебаний; из них 14 колебаний происходят в плоскости молекулы (8 валентных и 6 деформационных) и 6 неплоских деформационных колебаний - перпендикулярно этой плоскости. Ещё более симметричная тет-раэдрическая молекула СН4 (рис. 2, г имеет f = 9 - одно невырожденное ко лебание (валентное), одно дважды вырожденное (деформационное) и два трижды вырожденных (одно валентное и одно деформационное).

Рис. 2. Равновесные конфигурации молекул: а - H2О; б - СО2; в - С6Н6; г - СН4. Числами указаны длины связей (в А) и величины валентных углов.

Вращательные уровне энергии можно найти квантованием вра щательного движения молекулы, рас сматривая её как твёрдое тело с опреде ленными моментами инерции. В простейшем случае двухатомной или линей ной многоатомной молекулы её энергш вращения
1634-6.jpg

где I - момент инерции молекулы относительно оси, перпендикулярной оси молекулы, а М - вращательный момент ко личсства движения. Согласно правила квантования.
1634-7.jpg

определяет масштао расстоянии межд; уровнями энергии, уменьшающий^ с увеличением масс ядер и межъядерньи расстояний. На рис. 1 показаны враща тельные уровни для каждого электронно колебательного состояния.

Различные типы М. с. возникают npi ра-эличных типах переходов между уров нями энергии молекул. Согласно (1 и (2)
1634-8.jpg
ют различной интенсивностью в зависимости от относительных вероятностей переходов (см. Квантовые переходы), к-рые могут быть приближённо рассчитаны квантовомеханич. методами. Для сложных молекул полосы одной системы, соответствующие данному электронному переходу, обычно сливаются в одну широкую сплошную полосу, могут накладываться друг на друга и неск. таких широких полос. Характерные дискретные электронные спектры наблюдаются в замороженных растворах органич. соединений (см. Шполъского эффект). Электронные (точнее, электронно-колебательно-вращательные) спектры изучаются экспериментально при помощи спектрографов и спектрометров со стеклянной (для видимой области) и кварцевой (для УФ-области) оптикой, в к-рых для разложения света в спектр применяются призмы или дифракционные решётки (см. Спектральные приборы).

Рис. 3. Электронно-колебательный спектр молекулы N2 в близкой ультрафиолетовой области; группы полос соответствуют различным значениям Д v= v' - v".

Рис. 4. Вращательное расщепление электронно-колебательной полосы 3805 А молекулы N2.

При ДЕэл = 0, а ДЕкол не= 0 получаются колебательные М. с., наблюдаемые в близкой (до неск. мкм) и в средней (до неск. десятков мкм) инфракрасной (ИК) области, обычно в поглощении, а также в комбинационном рассеянии света. Как правило, одновременно Д^вращ^ 0 и при заданном $кол получается колебательная полоса, распадающаяся на отдельные вращательные линии. Наиболее интенсивны в колебательных М. с. полосы, соответствующие Ди = v' - v" = 1 (для многоатомных молекул - Дvi" = vi" - vi" = 1 при Дvk= = vt,' - vk" = 0, где к не= i)/

Для чисто гармонич. колебаний эти отбора правила, запрещающие др. переходы, выполняются строго; для ангармо-нич. колебаний появляются полосы, для к-рых Дv > 1 (обертоны); их интенсивность обычно мала и убывает с увеличением Av.

Колебательные (точнее, колебательно-вращательные) спектры изучаются экспериментально в ИК-ооласти в поглощении при помощи ИК-спектрометров с призмами, прозрачными для ИК-излучения, или с дифракционными решётками, а также Фурье-спектрометров и в комбинационном рассеянии при помощи светосильных спектрографов (для видимой области) с применением лазерного возбуждения.

При ДЕэл = 0 и ДЕкол = 0 получаются чисто вращательные М. с., состоящие из отд. линий. Они наблюдаются в поглощении в далёкой (сотни мкм) ИК-области и особенно в микроволновой области, а также в спектрах комбинационного рассеяния. Для двухатомных и линейных многоатомных молекул (а также для достаточно симметричных нелинейных многоатомных молекул) эти линии равно отстоят (в шкале частот) друг от друга с интервалами Дv = в спектрах поглощения и Дv = в спектрах комбинационного рассеяния.

Чисто вращательные спектры изучают в поглощении в далёкой ИК-области при помощи ИК-спектрометров со спец. дифракционными решётками (эшелеттами) и Фурье-спектрометров, в микроволновой области при помощи микроволновых (СВЧ) спектрометров (см. Микроволновая спектроскопия), а также в комбинационном рассеянии при помощи светосильных спектрографов.

Методы молекулярной спектроскопии, основанные на изучении М. с., позволяют решать разнообразные задачи химии, биологии и др. наук (напр., определять состав нефтепродуктов, полимерных веществ и т. п.). В химии по М. с. изучают структуру молекул. Электронные М. с. дают возможность получать информацию об электронных оболочках молекул, определять возбуждённые уровни и их характеристики, находить энергии диссоциации молекул (по схождению колебательных уровней молекулы к границам диссоциации). Исследование колебательных М. с. позволяет находить характеристические частоты колебаний, соответствующие определённым типам хим. связей в молекуле (напр., простых двойных и тройных связей С - С, связей С - Н, N - Н, О - Н для органических молекул), различных групп атомов (напр., СН2, СН3, NH2), определять пространственную структуру молекул, различать цис- и транс-изомеры. Для этого применяют как инфракрасные спектры поглощения (ИКС), так и спектры комбинационного рассеяния (СКР). Особенно широкое распространение получил метод ИКС как один из самых эффективных оптич. методов изучения строения молекул. Наиболее полную информацию он даёт в сочетании с методом СКР. Исследование вращательных М. с., а также вращательной структуры электронных и колебательных спектров позволяет по найденным из опыта значениям моментов инерции молекул [к-рые получаются из значений вращательных постоянных, см. (7)] находить с большой точностью (для более простых молекул, например Н2О) параметры равновесной конфигурации молекулы - длины связей и валентные углы. Для увеличения числа определяемых параметров исследуют спектры изотопических молекул (в частности, в которых водород заменён дейтерием), имеющих одинаковые параметры равновесных конфигураций, но различные моменты инерции.

В качестве примера применения М. с. для определения хим. строения молекул рассмотрим молекулу бензола С6Н6. Изучение её М. с. подтверждает правильность модели, согласно к-рой молекула плоская, а все 6 связей С - С в бензольном кольце равноценные и образуют правильный шестиугольник (рис. 2, в), имеющий ось симметрии шестого порядка, проходящую через центр симметрии молекулы перпендикулярно сё плоскости. Электронный М. с. поглощения С6Н6 состоит из неск. систем полос, соответствующих переходам из основного чётного синглетного уровня на возбуждённые нечётные уровни, из к-рых первый является триплетным, а более высокие -синглетными (рис. 5). Наиболее интенсивна система полос в области 1840А (Е5 -Е5= 7,0 эв), наиболее слаба система полос в области 3400А (Е2 - Е1 = = 3,8 эв), соответствующая синглетно-три-плетному переходу, запрещённому приближёнными правилами отбора для полного спина. Переходы соответствуют возбуждению т. н. я-электронов, делокали-зованных по всему бензольному кольцу (см. Молекула); полученная из электронных молекулярных спектров схема уровней рис. 5 находится в согласии с приближёнными квантовомеханическими расчётами. Колебательные М. с. С6Н6 соответствуют наличию в молекуле центра симметрии - частоты колебаний, проявляющиеся (активные) в ИКС, отсутствуют (неактивные) в СКР и наоборот (т. н. альтернативный за-п р е т). Из 20 нормальных колебаний СбН6 4 активны в ИКС и 7 активны в СКР, остальные 11 неактивны как в ИКС, так и в СКР. Значения измеренных частот (в см~1): 673, 1038, 1486, 3080 (в ИКС) и 607, 850, 992, 1178, 1596, 3047, 3062 (в СКР). Частоты 673 и 850 соответствуют неплоским колебаниям, все остальные частоты - плоским колебаниям. Особо характерны для плоских колебаний частота 992 (соответствующая валентному колебанию связей С - С, состоящему в периодич. сжатии и растяжении бензольного кольца), частоты 3062 и 3080 (соответствующие валентным колебаниям связей С - Н) и частота 607 (соответствующая деформационному колебанию бензольного кольца). Наблюдаемые колебательные спектры С6Н6 (и аналогичные им колебательные спектры C6D6) находятся в очень хорошем согласии с теоретич. расчётами, позволившими дать полную интерпретацию этих спектров и найти формы всех нормальных колебаний.

Рис. 5. Схема электронных уровней и переходов для молекулы бензола. Энергия уровней дана в эв. С - синглетные уровни; Т - триплетный уровень. Чётность уровня указана буквами g и и. Для систем полос поглощения указаны примерные области длин волн в А, более интенсивные системы полос обозначены более жирными стрелками.

Подобным же образом можно при помощи М. с. определять структуру разнообразных классов органических и неорганических молекул, вплоть до весьма сложных, напр, молекул полимеров.

Лит.: Кондратьев В. Н., Структура атомов и молекул, 2 изд., М., 1959; Ельяшевич М. А., Атомная и молекулярная спектроскопия, М., 1962; Г е р ц-б е р г Г., Спектры и строение двухатомных молекул, пер. с англ., М., 1949; его же,

Колебательные и вращательные спектры многоатомных молекул, пер. с англ., М., 1949; его же, Электронные спектры и строение многоатомных молекул, пер. с англ., М., 1969; Применение спектроскопии в химии, под ред. В. Веста, пер. с англ., М., 1959.

М. А. Елъяшевич.

МОЛЕКУЛЯРНЫЙ ВЕС, то же, что молекулярная масса.

МОЛЕКУЛЯРНЫЙ ГЕНЕРАТОР, устройство, в котором когерентные электромагнитные колебания генерируются за счёт вынужденных квантовых переходов молекул из исходного энергетич. состояния в состояние с меньшей внутр. энергией (см. Когерентность, Квантовая электроника). М. г.- первый квантовый генератор, созданный в 1954 Н. Г. Басовым и А. М. Прохоровым (СССР) и независимо от них Ч. Таунсом, Дж. Гордоном и X. Цейгером (США). Оба варианта этого М. г. работали на молекулах аммиака NH3 и генерировали электромагнитные колебания с частотой 24840 Мгц (длина волны X = 1,24 см).

Для возбуждения генерации когерентных колебаний необходимо выполнение двух осн. условий: в рабочем объёме прибора количество частиц в исходном состоянии должно быть больше, чем в состоянии с меньшей внутр. энергией (инверсия населённостей); должна быть обеспечена связь между частицами, излучающими в различные моменты времени (положительная обратная связь). В М. г. первое условие осуществляется электростатической сортировкой пучка молекул, а обратная связь при помощи объёмного резонатора, настроенного на частоту, равную частоте излучения, сопровождающего переход молекулы из исходного энергетич. состояния в конечное. Пучок молекул формируется при вылете молекул из источника в вакуум через узкие отверстия или капилляры (см. Молекулярные и атомные пучки).

Электростатич. сортировка молекул по энергетич. состояниям в М. г. основана на том, что молекулы, обладающие электрич. дипольным моментом (напр., молекулы NH3), пролетая через неоднородное электрич. поле, отклоняются этим полем от прямолинейного пути по-разному в зависимости от энергии (см. Штар-ка эффект). В первом М. г. сортирующая система представляла собой к в а д-рупольный конденсатор, состоящий из 4 параллельных стержней спец. формы, соединённых попарно с высоковольтным выпрямителем (рис.). Электрич. поле такого конденсатора весьма неоднородно, что вызывает искривление траекторий молекул NH3, летящих вдоль его оси. Свойства молекул NH3 таковы, что те из них, к-рые находятся в верхнем из используемой пары энергетич. состояний, отклоняются к оси конденсатора и попадают внутрь объёмного резонатора. Молекулы, находящиеся в нижнем состоянии, отбрасываются в стороны и не попадают в резонатор. Отсортированный т. о. пучок содержит молекулы, находящиеся в верхнем энергетич. состоянии. Попадая внутрь резонатора, такие молекулы излучают под воздействием электромагнитного поля резонатора (вынужденное излучение). Излучённые фотоны остаются внутри резонатора, усиливая его поле и увеличивая вероятность вынужденного излучения для молекул, пролетающих позже. Если интенсивность пучка активных молекул такова, что вероятность вынужденного излучения фотона больше, чем вероятности поглощения фотона в стенках резонатора, то возникает процесс самовозбуждения - быстро возрастает интенсивность электромагнитного поля резонатора на частоте перехода за счёт внутр. энергии молекул пучка. Это возрастание прекращается, когда поле в резонаторе достигает величины, при к-рой вероятность вынужденного испускания становится столь большой, что за время пролёта резонатора успевает испустить фотон как раз половина молекул пучка. При этом для пучка в целом вероятность поглощения становится равной вероятности вынужденного испускания (см. Насыщения эффект). Мощность, генерируемая М. г. на пучке молекул NH3, составляет 10-8 era, стабильность частоты генерации в пределах 10-7 -10-11.

Сортировка молекул по энергетическим состояниям с помощью квадрупольного конденсатора.

В дальнейшем были созданы М. г. на ряде др. дипольных молекул, работающие в диапазоне сантиметровых и миллиметровых волн, и квантовые генераторы на пучке атомов водорода, работающие на длине волны 21 см. Эти приборы, как и квантовые усилители радиодиапазона, иногда наз. мазерами. Существует неск. конструктивных вариантов М. г., отличающихся устройством сортирующих систем, количеством резонаторов и т. п. К М. г. относят также квантовые генераторы, в к-рых инверсия населённости уровней молекул достигается не сортировкой, а др. способами, напр. воздействием вспомогательного электромагнитного поля (накачки), электрич. разрядом и др. В этом смысле к М. г. можно отнести и квантовые генераторы оптич. диапазона (лазеры), рабочим веществом к-рых служат молекулярные газы (см. Газовый лазер).

Лит.: Ораевский А. Н., Молекулярные генераторы, М., 1964; Г р и г о р ь-я н ц В. В., Жаботинский М. Е., 3 о л и н В. CD., Квантовые стандарты частоты, М., 1968; Зингер Дж., Мазеры, М., 1961; С и г м е н А., Мазеры, пер. с англ., М., 1966.

М. Е. Жаботинский.

МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ МЕТОД, важнейший метод квантовой химии. В основе метода лежит представление о том, что каждый электрон молекулы описывается своей волновой функцией - молекулярной орбиталью (МО). Вследствие невозможности точно решить Шрёдингера уравнение для систем с двумя и более электронами, способ получения выражения для МО неоднозначен. На практике чаще всего каждую МО ii>< представляют как ЛКАО - линейную комбинацию атомных орбиталей (АО)Хр (приближение МО ЛКАО) вида i|)< = СУММАр с*ЛЯМБДАр, где i - номер МО, р - номер АО, cip - алгебраич. коэффициенты, являющиеся мерой вкладов индивидуальных АО в МО.

Это приближение основано на предположении, что в окрестности любого атомного ядра МО ф1 должна напо минать составляющие её АО хр этого атома. Поскольку при соединении атомов в молекулу изменения состояния электронов по сравнению с исходным можно считать не слишком радикальными, то в рассматриваемом приближении по-прежнему пользуются атомными волновыми функциями (хотя и не обязательно с параметрами свободных атомов). Вместе с тем описание электрона с помощью ЛКАО отображает те качественные изменения, которые произошли в состоянии электрона при образовании молекулы: о любом из электронов молекулы нельзя более утверждать, что он находится у определённого атома. Подобно тому, как в атоме водорода электрон можно с различной вероятностью обнаружить в разных точках околоядерного пространства, так и в молекуле электрон «размазан» по всей молекуле в целом.

В общем случае метод МО рассматривает образование хим. связей как результат движения всех электронов в суммарном поле, созданном всеми электронами и всеми ядрами исходных атомов. Однако поскольку осн. вклад в образование связей дают электроны наружных (валентных) оболочек, обычно ограничиваются рассмотрением только этих электронов. Полная волновая функция Ф молекулы конструируется из одно-электронных МО фi с учётом требования антисимметрии волновой функции Ф (вытекающего из принципа Паули). Функции Ф, фi и хр находят при решении уравнения Шрёдингера вариационным методом, обычно по схеме самосогласованного поля (ССП) Хартри - Фока.

Количественные расчёты многоэлектронных молекул сопряжены с серьёзными математич. и технич. трудностями. Полные неэмпирич. расчёты по методу МО с достижением хартри-фоковского предела точности (к-рый к тому же иногда недостаточен для количественного сравнения с экспериментом) осуществлены для молекул с числом электронов порядка 50. Поэтому большинство проводимых расчётов носит полуэмпирич. характер и в них используются дополнительные приближения. Существуют многочисл. варианты метода ССП МО ЛКАО (различающиеся полнотой учёта межэлектронного взаимодействия и процедуры самосогласования), эффективность применения к-рых зависит от изучаемых объектов и их свойств. Существенно, что метод МО в его любой форме, даже в самых упрощённых вариантах, органически связан с пространственной симметрией молекул. Это позволяет получать вполне однозначную качественную информацию о многих свойствах молекул (степени вырождения энергетич. уровней, величине магнитного момента, интенсивности спектральных линий и т. д.) вне зависимости от характера выбранного приближения.

Начиная с 1965 всё большее развитие получает новый вариант М. о. м., не использующий приближения МО ЛКАО. В этом варианте объединены статистич. модель атома и нек-рые модели теории твёрдого тела. В результате удаётся построить спец. МО, к-рые удобно определять путём численного (не аналитического) решения ур-ния Шрёдингера также по схеме ССП. Расчёты по этому новому методу, почти не уступая по точности неэмпирич. расчётам ССП МО ЛКАО, обычно требуют для своего проведения в 100-1000 раз меньше машин-ного времени (минуты вместо десятков часов). Указанный метод особенно перспективен для количественных расчётов больших молекул.

В химии метод МО (особенно в форме МО ЛКАО) важен тем, что позволяет получать данные о строении и свойствах молекул, исходя из соответствующих характеристик атомов. Поэтому почти все современные концепции хим. связи и хим. реакционной способности базируются на представлениях метода МО.

Лит.: С л э т е р Дж., Электронная структура молекул, пер. с англ., М-, 1965; К о у л-с о н Ч., Валентность, пер. с англ., М., 1965; Д ь ю а р М., Теория молекулярных орби-талей в органической химии, пер. с англ., М., 1972; Шусторович Е. М., Химическая связь, М., 1973. Е. М. Шусторович.

"МОЛЕНИЕ ДАНИИЛА ЗАТОЧНИКА", памятник др.-рус. лит-ры 13 в. Написан в форме послания к переяслав-ско-суздальскому князю Ярославу Всеволодовичу. Автор, попавший в нужду, просит князя о помощи, изображает его как защитника подданных. Нек-рые исследователи считают "Моление..." первым опытом древнерус. дворянской публицистики. Для стиля "Моления..." характерны сочетание цитат из библейских книг, летописи и др. лит. соч. с образами живой речи, элементы сатиры, направленной против бояр и духовенства. По-видимому, "Моление..." написано на основе "Слова Даниила Заточника" (12 в.), однако вопросы хронологич. и лит. соотношения обоих текстов, как и вопрос об их авторстве, не решены наукой.

Лит.: Слово Даниила Заточника по редакциям XII и XIII вв. и их переделкам, Л., 1932; Рыбаков Б. А., Даниил Заточник и Владимирское летописание конца XII в., в сб.: Археографический ежегодник за 1970 год, М., 1971 (библ.). А. Н. Робинсон.

МОЛЕСКИН (англ, moleskin, от mole-крот и skin - кожа), плотная, прочная хл.-бум. ткань, вырабатываемая усиленным сатиновым переплетением (см. Переплетение нитей). М. имеет на лицевой стороне плотный гладкий уточный застил, к-рый создаётся своеобразным переплетением, а также большей плотностью нитей по утку, чем по основе. М. выпускается обычно гладкокрашеным в тёмные тона. Нек-рые сорта М. подвергаются ворсованию и паз. М.-сукно. М. употребляется для изготовления рабочей, спортивной и спец. форменной одежды, верха обуви, переплётов и пр. Наиболее плотные сорта М. иногда наз. чёртовой кожей.

МОЛЕТАЙ, город (до 1956 - село), центр Молетского р-на Литов. ССР. Расположен на р. Сесартис (басе. Няму-наса), в 33 км от ж.-д. ст. Утена (на линии Шяуляй - Швенчёнеляй) и в 70 км к С. от Вильнюса. Маслозавод. В окрестностях - много озёр (Молетская группа озёр).

МОЛЕШОТТ (Moleschott) Якоб (9.8. 1822, Хертогенбос, Нидерланды,- 20.5. 1893, Рим), немецкий физиолог и философ, представитель вульгарного материализма. Изучал медицину и физиологию в Гейдельбергском ун-те, в к-ром с 1847 читал лекции. В нач. 50-х гг. подвергся преследованиям за пропаганду материализма и атеизма и переехал в Швейцарию; с 1860-х гг. жил в Италии. Проф. в Цюрихе (с 1856), Турине (с 1861) и Риме (с 1879). М. фактически отождествлял философию с естествознанием, а в мышлении видел лишь физиологич. механизм. По М., все психологич. и духовные процессы имеют веществен-но-физиологич. природу и зависят, в частности, от характера пищи, её состава и т. п. Взгляды М. оказали нек-рое влияние на итал. учёных, в т. ч. на Ч. Ломброзо; к ним сочувственно относился Д. И. Писарев. Вульгарный материализм М. был подвергнут критике Л. Фейербахом, К. Марксом и Ф. Энгельсом. Биохимич. исследования М. сыграли значительную роль в развитии физиологич. химии.

Соч.: Fur meine Freunde. Lebens-Erinne-rungen, Giessen, 1894; в рус. пер.-Естествознание и медицина, СПБ, 1865; Физиологические эскизы, М., 1863; Вращение жизни в природе, СПБ - М., 1867; Причины и действия в учении о жизни, М., 1868; Учение о пище, 2 изд., СПБ, 1868.

Лит.: Жане П., Современный материализм, пер. с франц., М., 1867; Таганский Г., Вульгарный материализм третьей четверти XIX в. и современные механисты, в сб.: Из истории философии XIX в., [М.], 1933; Ю ш м а н о в Н., Общественно-политические взгляды, вульгарных материалистов, там же. А. П. Огурцов.

МОЛИ настоящие (Tineidae), семейство бабочек. Крылья в размахе от 6 (Meessia) до 60 мм (Scardia). 2000 видов; распространены очень широко. В СССР ок. 200 видов. Гусеницы в шёлковых ходах или чехликах; питаются растит. или животными остатками, грибами и лишайниками. Ок. 40 видов - вредители; одни портят продовольственные запасы (особенно зерновая М. - Nema-pogon granellus), другие - шерсть, мех, перо (платяная М.- Tineola biselliella и мебельная М.-Т. furciferella).

М. наз. также представителей др. семейств: выемчатокрылые М., горностаевые М., моли-минеры и др.

Зерновая моль (самец).

Лит.: Загуляев А. К., Настоящие моли (Tineidae), в. 2-4, М.- Л., 1960-73 (Фауна СССР. Насекомые чешуекрылые, т. 4, в. 3); е г о же, Моли и огневки - вредители зерна и продовольственных запасов, М.-Л., 1965.

МОЛИБДАТЫ, соли молибденовых к-т. Известны нормальные М.- соли молибденовой к-ты Н2МоО4 и полимолиб-даты - соли изополимолибденовых к-т. Все нормальные М., за исключением М. щелочных металлов и магния, малорастворимы в воде. Среди растворимых М. наибольшее практич. значение имеет Na2MoO4, используемый в произ-ве лаков и красок. Растворимые М. применяют как микроудобрения.

Из малорастворимых М. практич. интерес представляют соли Са, Fe, Pb, встречающиеся в природе. Кроме того, М. кальция применяют для введения Мо при произ-ве легированных сталей. Из изополимолибдатов известны, напр., ди-, три- и тетрамолибдаты натрия -Ма2Мо2Ог, Na2Mo3Oio, Na2Mo4Oi3. Практическое значение имеют полимо-либдаты - парамолибдат натрия Na6Mo7 О24- ;гН2О и парамолибдат аммония (МН4)бМо7О24-xН2О. Последний обычно является конечным продуктом переработки молибденовых концентратов и широко используется как реактив.

А. Н. Зеликман.

МОЛИБДАТЫ ПРИРОДНЫЕ, минералы класса молибдатов, соли молибденовой кислоты; их состав в самом простом случае может быть изображён в виде R [МоО4] или R [МоО4]-пН2О, где R = Са, Pb, (UO2), реже Си, Bi, Fe3+. Известно более 15 М. п., значит, часть к-рых составляют молибдаты урана. В основе структуры М. п. лежат искажённые тетраэдры [МоО4]2+, по своим кристаллохимич. особенностям близкие к тетраэдрам [WO4]2+, что обусловливает существование в природе изоморфных смесей между молибдатами и вольфраматами. Безводные М. п. имеют островное строение, близкое структуре тетрагонального шеелита Са [WO4]. К М. п. относятся след, минералы: по-веллит Са [МоО4], вульфенит РЬ[МоО4], чиллагит Pb[(Mo, W)O4], кёхлинит (ВЮ)2[МоО4]. Более сложное, часто слоистое строение имеют основные и водные М. п. Из них наиболее распространены ферримолибдит Fe2 [МоО4]3 • пН2О,

линдгренит Си3[МоО4]2(ОН)2, бетпак-далит CaFe23+ [As2MosO24]-14H2O.

М. п. возникают преим. в экзогенных условиях - в зоне окисления молибденовых, вольфрамо-молибденовых и мед-но-молибденовых месторождений - при изменении молибденита, образуя по нему псевдоморфозы (повеллит, ферримолибдит) или землистые налёты бледно-жёлтого (повеллит) или ярко-жёлтого (ферримолибдит) цвета; реже вдоль трещин появляются мелкие таблитчатые или тетрагонально-дипирамидальные кристаллы повеллита. М. п. могут возникать и в гидротермальных условиях (вольфра-митсодержащие повеллиты).

Особая группа-открытые в 1960-е гг. молибдаты урана: умохоит (UO2)[MoO4]X Х4Н2О, иригинит {UO2[Mo2O7](H2O)2}X ХН2О, калькурмолит Са(иО2)3[МоО4]з (ОН)2-8Н2О, седовит U[MoO4]2 и др. Все эти минералы образуются в зоне окисления молибдено-урановых месторождений и встречаются в виде порошковатых выделений, корок, натечных агрегатов и желваков, обычно окрашенных в чёрный, тёмно-зелёный, синий (умохоит), красно-бурый (седовит) и канареечно-жёлтый (иригинит) цвета.

При значит, развитии зоны окисления на молибденовых месторождениях вторичные М. п. (повеллит) могут извлекаться попутно с молибденитом.

Лит.: Геохимия молибдена и вольфрама, 2 изд., М., 1971.

А. И. Гинзбург.

МОЛИБДЕН (лат. Molybdaenum), Mo, химический элемент VI группы перио-дич. системы Менделеева; ат. н. 42, ат. м. 95,94; светло-серый тугоплавкий металл. В природе элемент представлен семью стабильными изотопами с массовыми числами 92, 94-98 и 100, из к-рых наиболее распространён 98Мо (23,75%). Вплоть до 18 в. осн. минерал М. молибденовый блеск (молибденит) не отличали от графита и свинцового блеска, т. к. они очень схожи по внешнему виду. Эти минералы носили общее название < молибден" (от греч. molybdos - свинец).

Элемент М. открыл в 1778 швед, химик К. Шееле, выделивший при обработке молибденита азотной к-той молибденовую к-ту. Швед, химик П. Гьельм в 1782 впервые получил металлич. М. восстановлением МоОз углеродом.

Р ас пространение в природе. М.- типичный редкий элемент, его содержание в земной коре 1,1-10~4% (по массе). Общее число минералов М. 15, большая часть их (различные молиб-даты) образуется в биосфере (см. Мо-либдаты природные). В магматич. процессах М. связан преим. с кислой магмой, с гранитоидами. В мантии М. мало, в ультраосновных породах лишь 2 • 10~5 % . Накопление М. связано с глубинными горячими водами, из к-рых он осаждается в форме молибденита MoS2 (гл. пром. минерал М.), образуя гидротермальные месторождения. Важнейшим осадителем М. из вод служит H2S.

Геохимия М. в биосфере тесно связана с живым веществом и продуктами его распада; ср. содержанием, в организмах 1-10~5%. На земной поверхности, особенно в щелочных условиях, Mo(IV) легко окисляется до молибдатов, многие из которых сравнительно растворимы. В ландшафтах сухого климата М. легко мигрирует, накапливаясь при испарении в соляных озёрах (до 1-10-30/о) и солончаках. Во влажном климате, в кислых почвах М. часто малоподвижен; здесь требуются удобрения, содержащие М. (напр., для бобовых).

В речных водах М. мало (10-7-10-8-%). Поступая со стоком в океан, М. частично накапливается в морской воде (в результате её испарения М. здесь 1-10-6%), частично осаждается, концентрируясь в глинистых илах, богатых органич. веществом и H2S.

Помимо молибденовых руд, источником М. служат также нек-рые молибде-носодержащие медные и медно-свинцо-во-цинковые руды. Добыча М. быстро растёт.

Физич. и химич. свойства. М. кристаллизуется в кубич. объёмно-центрированной решётке с периодом а = ЗД4А. Атомный радиус 1,4А, ионные радиусы Мо4+ 0,68А, Мо6+ 0,62А. Плотность 10,2 г/см3 (20 °С); t., 2620 ± ± 10 °С; tкип ок. 4800 °С. Уд. теплоёмкость при 20-100 °С 0,272 кдж/(кг • К), т. е. 0,065 кал/(г-град). Теплопроводность при 20 °С 146,65 вт/(м*К), т. е. 0,35 кал/(см*сек*град). Термич. ко-эфф. линейного расширения (5,8-6,2)-•10~б при 25-700 °С. Удельное электрическое сопротивление 5,2*10~~8 ом*м, т. е. 5,2-10~6ом*см; работа выхода электронов 4,37 эв. М. парамагнитен; атомная магнитная восприимчивость ~90-10-6 (20 °С).

Механич. свойства М. зависят от чистоты металла и предшествующей меха-нич. и термич. его обработки. Так, твёрдость по Бринеллю 1500-1600 Мн/м2, т. е. 150-160 кгс/мм2(для спечённого штабика), 2000-2300 Мн/м2 (для кованого прутка) и 1400-1850 Мн/м2 (для отожжённой проволоки); предел прочности для отожжённой проволоки при растяжении 800-1200 Мн/м2. Модуль упругости М. 285-300 Гн/м2. Мо более пластичен, чем W. Рекристаллизующий отжиг не приводит к хрупкости металла.

На воздухе при обычной темп-ре М. устойчив. Начало окисления (цвета побежалости) наблюдается при 400 °С. Начиная с 600 °С металл быстро окисляется с образованием МоО3. Пары воды при темп-pax выше 700 °С интенсивно окисляют М. до МоО2. С водородом М. химически не реагирует вплоть до плавления. Фтор действует на М. при обычной темп-ре, хлор при 250 °С, образуя MoF6 и МоСl6. При действии паров серы и сероводорода соответственно выше 440 и 800 °С образуется дисульфид MoS2. С азотом М. выше 1500 °С образует нитрид (вероятно, Mo2N). Твёрдый углерод и углеводороды, а также окись углерода при 1100-1200 °С взаимодействуют с металлом с образованием карбида Мо2С (плавится с разложением при 2400 °С). Выше 1200 °С М. реагирует с кремнием, образуя силицид MoSi2, обладающий высокой устойчивостью на воздухе вплоть до 1500-1600 °С (его микротвёрдость 14 100 Мн/м2).

В соляной и серной к-тах М. несколько растворим лишь при 80-100 "С. Азотная к-та, царская водка и перекись водорода медленно растворяют металл на холоду, быстро - при нагревании. Хорошим растворителем М. служит смесь азотной и серной к-т. Вольфрам в смеси этих к-т не растворяется. В холодных растворах щелочей М. устойчив, но несколько кор-родирует при нагревании. Конфигурация внешних электронов атома Mo4d55s1, наиболее характерная валентность 6. Известны также соединения 5-, 4-, 3-и 2-валентного М.

М. образует два устойчивых окисла -трёхокись МоОз (белые кристаллы с зеленоватым оттенком, tпл 795 °С, t кип 1155 °С) и двуокись МоО2 (тёмно-коричневого цвета). Кроме того, известны промежуточные окислы, соответств. по составу гомологич. ряду Моn O3n-i (Мо9О26, Мо8О23, Мо4Ом); все они термически неустойчивы и выше 700 °С разлагаются с образованием МоОз и МоО2. Трёхокись МоО3 образует простые (или нормальные) кислоты М.-моногидрат Н2МоО4, дигидрат Н2МоО4* •Н2О и изополикислоты - H6Mo7O24, HМo6O24, H4Мo8O26 др. Соли нормальной к-ты наз. нормальными молибдатами, а поликислот-полимолибдатами. Кроме названных выше, известно неск. надкис-лот М.- Н2МоОx (х - от 5 до 8) и комплексных гетерополисоединений с фосфорной, мышьяковой и борной к>тами. Одна из распространённых солей гетеро-поликислот - фосфоромолибдат аммония (NH4)3 [Р (Мо3О,о)4]-6Н2О. Из гало-генидов и оксигалогенидов М. наибольшее значение имеют фторид MoF6 (tпл 17,5 °С, tкип 35 °С) и хлорид МоС15 (tпл 194 °С, tкин 268 °С). Они могут быть легко очищены перегонкой и используются для получения М. высокой чистоты.

Достоверно установлено существование трёх сульфидов М. - МоS3, MoS2 и Mo2S3. Практич. значение имеют первые два. Дисульфид MoS2 встречается в природе в виде минерала молибденита; может быть получен действием серы на М. или при сплавлении МоО3 с содой и серой. Дисульфид практически нерастворим в воде, НС1, разбавленной H2SO4-Распадается выше 1200 °С с образованием Mo2S3.

При пропускании сероводорода в нагретые подкисленные растворы молибдатов осаждается MoS3.

Получение. Осн. сырьём для производства М., его сплавов и соединений служат стандартные молибдени-товые концентраты, содержащие 47-50% Мо, 28-32% S, 1-9% SiO2 и примеси др. элементов. Концентрат подвергают окислительному обжигу при 570-600 °С в многоподовых печах или печах кипящего слоя. Продукт обжига - огарок содержит МоО3, загрязнённую примесями. Чистую МоО3, необходимую дл произ-ва металлич. М., получают из огар ка двумя путями: 1) возгонкой npi 950-1100 °С; 2) хим. методом, к-рьи состоит в следующем: огарок выщела чивают аммиачной водой, переводя М в раствор; из раствора молибдата аммо ния (после очистки его от примесей Си Fe) выделяют полимолибдаты аммо ния (гл. обр. парамолибдат 3(NH4)2O •7МоО3*nН2О) методом нейтрализа ции или выпарки с последующей кри сталлизацией; прокаливанием парамо либдата при 450-500 °С получают чи стую МоОз, содержащую не более 0,05% примесей.

Металлич. М. получают (сначалг в виде порошка) восстановлением МоО; в токе сухого водорода. Процесс ведут в трубчатых печах в две стадии: первая - при 550-700 °С, вторая - при 900-1000 °С. Молибденовый порошок превращают в компактный металл методом порошковой металлургии или методом плавки. В первом случае получают сравнительно небольшие заготовки (сечением 2-9 см2 при длине 450-600 мм). Порошок М. прессуют в стальных пресс-формах под давлением 200-300 Мн/м2 (2-3 тс/см2). После предварительного спекания (при 1000-1200 °С) в атмосфере водорода заготовки (штабики) подвергают высокотемпературному спеканию при 2200-2400 °С. Спечённый штабик обрабатывают давлением (ковка, протяжка, прокатка). Более крупные спечённые заготовки (100-200 кг) получают при гидростатич. прессовании в эластичных оболочках. Заготовки в 500-2000 кг производят дуговой плавкой в печах с охлаждаемым медным тиглем и расходуемым электродом, к-рым служит пакет спечённых штабиков. Кроме того, используют электроннолучевую плавку М. Для производства ферромолибдена (сплав; 55-70% Мо, остальное Fe), служащего для введения присадок М. в сталь, применяют восстановление обожжённого молибденитового концентрата (огарка) ферросилицием в присутствии железной руды и стальной стружки.

Применение. 70-80% добываемого М. идёт на производство легированных сталей. Остальное количество применяется в форме чистого металла и сплавов на его основе, сплавов с цветными и редкими металлами, а также в виде хим. соединений. Металлический М.- важнейший конструкционный материал в произ-ве электроосветительных ламп и электровакуумных приборов (радиолампы, генераторные лампы, рентгеновские трубки и др.); из М. изготовляют аноды, сетки, катоды, держатели нити накала в электролампах. Молибденовые проволока и лента широко используются в качестве нагревателей для высокотемпературных печей.

После освоения производства крупных заготовок М. стали применять (в чистом виде или с легирующими добавками др. металлов) в тех случаях, когда необходимо сохранение прочности при высоких темп-pax, напр, для изготовления деталей ракет и др. летательных аппаратов. Для предохранения М. от окисления при высоких темп-pax используют покрытия деталей силицидом М., жаростойкими эмалями и др. способы защиты. М. применяют как конструкционный материал в энергетич. ядерных реакторах, т. к. он имеет сравнительно малое сечение захвата тепловых нейтронов (2,6 барн). Важную роль М. играет в составе жаропрочных и кислотоустойчивых сплавов, где он сочетается гл. обр. с Ni, Co и Сг.

В технике используются нек-рые соединения М. Так, MoS2 - смазочный материал для трущихся частей механизмов; дисилицид молибдена применяют при изготовлении нагревателей для высокотемпературных печей; Na2MoO4 -в произ-ве красок и лаков; окислы М.-катализаторы в хим. и нефтяной пром-сти (см. также Молибденовая синь).

А. Н. Зеликман.

М. в организме растений, животных и человека постоянно присутствует как микроэлемент, участвующий преим. в азотном обмене. М. необходим для активности ряда окислительно-вос-становит. ферментов (флавопротеидов), катализирующих восстановление нитратов и азотфиксацию у растений (много М. в клубеньках бобовых), а также реакции пуринового обмена у животных. В растениях М. стимулирует биосинтез нуклеиновых к-т и белков, повышает содержание хлорофилла и витаминов. При недостатке М. бобовые, овёс, томаты, салат и др. растения заболевают особым видом пятнистости, не плодоносят и погибают. Поэтому растворимые молибдаты в небольших дозах вводят в состав микроудобрений. Животные обычно не испытывают недостатка в М. Избыток же М. в корме жвачных животных (биогеохимич. провинции с высоким содержанием М. известны в Кулундин-ской степи, на Алтае, Кавказе) приводит к хронич. молибденовым токсикозам, сопровождающимся поносом, истощением, нарушением обмена меди и фосфора. Токсич. действие М. снимается введением соединений меди.

Избыток М. в организме человека может вызвать нарушение обмена веществ, задержку роста костей, подагру и т. п.

И. Ф. Грибовская.

Лит.: Зеликман А. Н., Молибден, М., 1970; Молибден. Сборник, пер. с англ., М., 1959; Биологическая роль молибдена, М., 1972.

МОЛИБДЕНИРОВАНИЕ, нанесение молибденового покрытия на поверхность изделий из стали, титана, ниобия и др. металлич. материалов с целью повышения их твёрдости, поверхностной прочности, коррозионной стойкости в азотной к-те, а с дополнит, силицированием -для повышения жаростойкости при высоких температурах. М. проводится различными способами. В порошках молибдена или ферромолибдена в потоке водорода при 900-1000 °С. В газовых средах: в токе водорода и соляной кислоты в присутствии молибдена или ферромолибдена, причём газовая смесь образуется при 300-400° С, а молибден выделяется на изделии при 800-1000 °С; в токе водорода, проходящего через пятихлористый молибден МоС15 при 300 °С,- получившаяся смесь разлагается при 800-1000 °С с выделением молибдена на изделии; в смеси паров гексакарбонила молибдена Мо(СО)6 с водородом или аргоном,-Мо(СО)б разлагается при темп-ре выше 250 °С, поэтому практически процесс проводят в интервале темп-р от 250 °С (когда на изделии образуется карбид молибдена, обладающий высокой твёрдостью) до 850 °С. В жидкой среде: электролизом в ванне с расплавом молиоденовокислого натрия

Na2MoO4; восстановлением молибдена из указанного расплава при 1150 °С путём продувания через ванну водорода или предварительно диссоциированного аммиака.

Лит.: Конструкционные материалы, т. 2, М., 1964 (Энциклопедия современной техники). А. С. Строев.

МОЛИБДЕНИТ, молибденовый блеск, минерал из класса сульфидов, химич. состав MoS2; содержит 60% Мо и 40% S; из примесей в небольшом кол-ве обнаруживается Re (до 0,33%). Кристаллизуется в гексагональной системе; в кристаллич. структуре атомы Мо, окружённые шестью атомами S, находятся в центре тригональных призм, вершины к-рых занимает S. Тригональные призмы образуют слои с прочными металлически-ковалентными связями атомов внутри слоя. Между слоями связи слабые, остаточного вандерваальсовского типа. Отчётливо слоистая структура определяет таб-литчатый до чешуйчатого габитус кристаллов М. и их совершенную спайность [0001]. М. встречается в виде чешуйчатых или листоватых агрегатов. Цвет свин-цово-серый с сильным металлич. блеском. Твёрдость по минералогич. шкале 1-1,5; плотность 4620-4800 кг/л3.

М. встречается в грейзеновых, реже пегматитовых месторождениях, в к-рых он ассоциирует с вольфрамитом, топазом, касситеритом, флюоритом, халькопиритом, пиритом и др. Крупные месторождения М. известны в контактово-метасоматич. гранато-пироксеновых скарнах, а также в гипотермальных и ме-зотермальных кварцево-молибденитовых рудных жилах. В СССР месторождения М. находятся на Кавказе, в Забайкалье, Ср. Азии; за рубежом - в США (Клай-макс в Колорадо), Мексике, Норвегии. Важнейший минерал молибденовых руд.

МОЛИБДЕНОВАЯ СИНЬ, молибден-содержащее вещество ярко-синего цвета; образуется при действии восстановителей (SO2, H2S, Zn, глюкоза и др.) на растворы молибденовой к-ты или кислые растворы молибдатов. Под названием "М. с." объединяют различные соединения, в к-рых Мо находится в степени окисления между +5 и +6. Получают М. с. в виде аморфных осадков различного состава, напр. Мо8О23-хН2О, Mo4O11O*хH2O и др. Из коллоидных растворов М. с. легко адсорбируется растительными и животными волокнами, окрашивая их в синий цвет; на этом основано, в частности, крашение шёлка. Реакции образования М. с. широко применяются в аналитич. химии.

МОЛИБДЕНОВЫЕ РУДЫ, природные минеральные образования, содержащие Мо в кол-вах, при к-рых экономически целесообразно его извлечение. Запасы Мо в рудах разрабатываемых месторождений колеблются от неск. тыс. до млн. т. Ср. содержание Мо в рудах крупных месторождений 0,06-0,3% , мелких -0,5-1%. В качестве попутного компонента М о извлекается из др. руд при содержании в них Мо от 0,005% и выше.

М. р. образуются в эндогенных и экзогенных условиях. Руды эндогенного происхождения связаны с группами скар-новых, грейзеновых и гидротермальных месторождений. Гл. рудным минералом в них является молибденит (MoS2), содержащий 60% Мо. В М. р. в различных соотношениях с Мо находятся Си, W, в меньшей мере Bi, Be, Sn; кроме того, в молибдените постоянно присутствует Re. М. р. пространственно и генетически связаны с интрузивными породами: медно-молибденовы е-с монцонитами, гранодиоритами, гра-носиенитами; монометальные молибденовые - с биотит-рого-вообманковыми гранитами; в о л ь ф-ра мо-молибденовые - с лей-кократовыми субщелочными гранитами.

М. р. экзогенного происхождения известны в углях, углисто-глинисто-кремнистых сланцах, а также в твёрдых неф-тебитумах. Здесь Мо тесно связан с орга-нич. веществом и обычно ассоциирует с V, U, Ge. Содержания Мо в таких месторождениях невысокие - тысячные и сотые доли процента; руды этих месторождений представляют собой резерв будущего. Осн. добыча М. р. производится из крупных скарновых и штоквер-ковых месторождений. Обогащение М. р. флотацией позволяет получить молибденовый концентрат с содержанием Мо до 51% .Наиболее крупные месторождения М. р. известны; в СССР -в Арм. ССР (Каджаран, Агараки др.), на Сев. Кавказе (Тырныауз), в Узб. ССР (Алмалык), Казах.ССР(Коунрад, Бощекуль); за рубежом - в США (Клаймакс, Бингем, Хен-дерсон и др.), Канаде (Эндако), Чили (Чукикамата и др.), Мексике (Кананеа), Китае, Австралии и др. Добыча М. р. (по содержанию Мо32)в капиталистич. и развивающихся странах (в тыс. га, на 1970): США - 84,2; Канада - 25,6; Чили -10,0; меньшие кол-ва добываются в Перу, Норвегии, Японии, Мексике и др. О получении и использовании Мо см. Молибден.

Лит.: Оценка месторождений при поисках и разведках, в. 19 - X р у ш о в Н. А., Молибден, М., 1961; П о к а л о в В. Т., Генетические типы и поисковые критерии эндо-генных месторождений молибдена, М., 1972.

В. Т. Покалов.

МОЛИБДЕНОВЫЕ СПЛАВЫ, сплавы на основе молибдена; используются гл. обр. как жаропрочные конструкционные материалы. Детали из М. с. длительно работают в вакууме при темп-pax до 1800 °С; кратковременно (до 5 мин) могут работать в продуктах сгорания топлива при 2300-2500 °С; срок службы деталей из М. с. с защитными покрытиями на воздухе или в др. окислит, средах при 1200-2000 "С составляет 500-5 ч соответственно. М. с. получают обычно плавкой в вакуумных дуговых печах, электроннолучевых и гарнисажных печах, обеспечивающих чистоту и пластичность металла. При произ-ве М. с. методом порошковой металлургии загрязнение металла значительно снижает его технологич. свойства (в основном свариваемость).

Для легирования молибдена применяют сравнительно небольшое число элементов - Ti, Zr, Hf, Nb, V, к-рые вводятся в кол-ве 0,1-1,5% ; при таком их содержании обеспечиваются высокая жаропрочность и достаточная пластичность (Re и W можно вводить до 50% , сохраняя удовлетворит. деформируемость сплава). Жаропрочность М. с. повышается при дополнит, легировании углеродом (до 0,4% ), что приводит к образованию явно гетерофазных сплавов с карбидным упрочением. Для повышения технологич. свойств М. с. применяется также легирование малыми кол-вами В, Сг, Ni, Та и нек-рых редкоземельных элементов.

Из пром. М. с. изготовляют прутки, поковки, штамповки, листы, проволоку,

Механические свойства молибденовых сплавов при кратковременных испытаниях (средние значения
для различных сплавов)
 
Температура , °С
Модуль упругости Ед
Предел прочности сть
Относительное удлинение 6, %
Гн1м2
кгс/мм2
Мн/м2
кгс/ммг
20 
1200
330 
270
33 000
27 000
700-800 300-450
7-30
10-15
7-30
10-15

трубы. Важной особенностью М. с. является сохранение значит, прочности при повышении темп-ры (см. табл.).

Предел длительной прочности М. с. (100-часовые испытания при 1200 °С) достигает 350 Мн/м2 (35 кгс/мм2). Для М. с., как и для чистого молибдена, характерна хладноломкость. При испытании М. с. на удар порог хладноломкости находится в пределах 150-300 °С, хотя при испытаниях на растяжение при комнатной темп-ре сплавы достаточно пластичны и сохраняют пластичность даже при -70 °С. Физ. свойства малолегированных М. с. близки к свойствам чистого молибдена.

Малолегированные М. с. упрочняются путём нагартовки в процессе изготовления полуфабрикатов деформацией при темп-pax ниже темп-ры рекристаллизации (1300-1600 °С). Осн. видом термообработки для малолегированных М. с. является отжиг: отжиг готовых изделий для снятия напряжений при 1000-1200 °С, рекристаллизационный отжиг в течение нескольких часов при темп-ре, немного превышающей температуру рекристаллизации, и гомогенизирующий отжиг слитков при 1800-2000°С. Гетерофазные М. с., упрочняемые старением, отжигаются при 1900-2000 °С в течение нескольких часов.

М. с. нежаростойки из-за легкоплавкости и летучести окислов молибдена. Разработаны защитные покрытия для М. с., к-рые обеспечивают работу сплавов в самых разнообразных условиях при темп-pax до 2000 °С в течение определённого времени, зависящего от типа покрытий, температуры, среды и др. Без защитных покрытий М. с. могут работать только в нейтральной или восстановительной среде и в вакууме. М. с. обладают удовлетворит. технологич. свойствами. Они хорошо обрабатываются резанием. Из листов наиболее пластичных сплавов при 200-500 °С штамповкой можно изготовлять различные детали с большой степенью вытяжки. Листы этих сплавов удовлетворительно свариваются контактной сваркой, а также сваркой плавлением: аргонодуговой - в камерах с нейтральной атмосферой и электроннолучевой - в вакууме. При таких методах сварки сварные швы пластичны и имеют для лучших сплавов угол загиба 50-160° при комнатной темп-ре.

М. с. применяют для изготовления деталей ракет и др. летат. аппаратов и спец. установок (вставки критич. сечений сопел, кромки крыльев, газовые рули, радиоантенны, обшивка, детали атомных реакторов, катоды и аноды термоэмиссионных преобразователей и пр.). Кроме того, их используют в качестве материала для матричных вставок при литье под давлением, оснастки в произ-ве труб, деталей оборудования нефт. и стек, пром-сти, деталей электротехнической и радиоэлектронной промышленности и в др. областях.

Лит.: Молибден, Сб. ст., [переводы], М., 1962; Тугоплавкие материалы в машиностроении. Справочник, под ред. А. Т- Туманова н К. И. Портного, М., 1967; С а-в и ц к и и Е. М., Бурханов Г. С., Металловедение сплавов тугоплавких н редких металлов, 2 изд., М., 1971.

А. С. Строев.

МОЛИБДЕНОВЫЕ УДОБРЕНИЯ, один из видов микроудобрений. В качестве М. у. используют молибденово-кислый аммоний, молибденовый суперфосфат и др.

МОЛИЗЕ (Molise), область в Юж. Италии, на Апеннинском п-ове. Образована в 1965; в составе её провинции Кампобас-со и Изерния. Пл. 4,4 тыс. км2. Нас. 319,6 тыс. чел. (1971). Адм. ц.- г. Кампо-бассо. На С.-В., вдоль побережья Адриа-тич. м.- холмистая равнина. В центр, части М.- плоскогорье Молизе, сложенное преим. флишем. На Ю.- входящий в Апеннины известняковый хр. Матесе вые. до 2050 м (г. Милетто). Основа экономики области - с. х-во. Обрабатывается менее 50% площади, гл. обр. под пшеницу, бобовые и др. культуры. В предгорной зоне и на пологих склонах нижнего пояса гор - виноградарство и выращивание олив. В горах -пастбищное животноводство, гл. обр. овцеводство (138 тыс. голов овец в 1971). Пром-сть по обработке с.-х. продукции. Разнообразные кустарные промыслы. Создаётся (1973) крупный туристский комплекс (отели, плавательные бассейны и др.).

МОЛИНИЯ (Molinia), род растений сем. злаков. Многолетние плотнодерно-винные травы; стебли выше основания без узлов. Соцветие - длинная, б. ч. узкая метёлка. Колоски 2-5-цветковые, ланцетовидные. 2 (илиЗ) вида, в умеренном и холодном поясах Евразии и в Северной Америке (заносное). В СССР 2 вида. Наиболее распространена М. голубая, или с и н я в к а (М. coerulea), растущая преим. в Европ. части СССР по сырым лугам, кустарникам, полянам, иногда на солончаках; даёт жёсткое малоценное сено; трава- хороший подстилочный материал; корни пригодны для изготовления щёток, матов и т. п. Пестролистная садовая форма М. голубой декоративна .

Молиния голубая.

МОЛИТВА, обращение к божеству, один из осн. элементов всякого религ. культа, создающий иллюзорное ощущение контакта верующего со сверхъестественным и психологич. общности религ. группы. Возникая из магии слова (заклинание), М. принимает вид прошения, а в дальнейшем также благодарности и славословия. Молитв, формы дали образец религ. поэзии (напр., псалмы), позже -нек-рым жанрам фольклора (напр., духовные стихи) и поэтич. лирики. В античности М. была частью публичного ритуала, подчас имевшего непосредств. обществ, и политич. значение; христианство ввело внутреннюю (чумную") М.( получившую особое значение в мистике. Христ. теология стремится противопоставить "истинную" М., как призывающую к милости божьей, "языческим" заклинаниям, ориентированным на получение определённых благ, спасение от бедствий и пр. В религиозной жизни христ. общин имели место обе трактовки М., постоянно сохранялись оппозиции литургически-публичной и индивидуальной М., наружной и внутренней, формально-ритуальной и эмоционально-насыщенной. В истории религии борьба за ту или иную форму М. нередко была связана с соперничеством обществ, течений внутри церкви

А. П. Каждан.

"МОЛЛА НАСРЕДДИН", азербайджанский еженедельный иллюстрированный сатирич. журнал. Основан Дж. Ма-медкулизаде в 1906 в Тбилиси. Выходил до марта 1912. Возобновлён в янв. 1913, снова закрыт в окт. 1914. Журнал, выражавший идеи Революции 1905-07 и рабочего движения в Закавказье, широко распространялся по всему Бл. и Ср. Востоку и оказал большое влияние на развитие демократич. печати. Издание было-возобновлено в 1917 и прервалось в конце того же года. В 1921 "М. Н." нек-рое время выходил в Тебризе (Иран). В 1922-31 издавался в Баку. "М. Н.>-занимает важное место в истории азерб. периодики. На его страницах печатались передовые азерб. писатели М. А. Сабир, А. Ахвердов, Гамгюсар и др. В дорево-люц. годы журнал обличал патриар-хально-феод. обычаи, призывал к борьбе за свободу, выступал против империализма и деспотич. режимов в странах